PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Special Issue / JST Vol. 32 (S5) 2024 / JST(S)-0634-2024

 

Fabrication and Characterisation of Kenaf Fibre Reinforced Polyamide Biocomposites for Railway Sleeper Applications

Ahmad Musa Mukaddas, Farah Nora Aznieta Abdul Aziz, Khalina Abdan and Ayu Rafiqah Shafi

Pertanika Journal of Science & Technology, Volume 32, Issue S5, December 2024

DOI: https://doi.org/10.47836/pjst.32.S5.07

Keywords: Flexural strength, polyamide biocomposites, railway composite sleeper, thermogravimetric analysis, treated kenaf fibre, water absorption

Published on: 30 October 2024

Railway passing traffic, speed, and load have significantly increased over the years, prompting industry stakeholders and researchers to seek an alternative sleeper material that can demonstrate its ability to potentially possess higher in-service bending resistance and be environmentally friendly and durable. To address these needs and due to environmental concerns, kenaf-reinforced polyamide has become of great importance. However, they could not be applied as railway track components because of the non-availability of their performance in this regard. In bridging this gap, this paper focused on fabricating and characterising six different formulations of treated kenaf fibre (TKF, 0–50% at 10% loading interval) reinforced polyamide biocomposites for railway sleeper applications. The result showed that the incorporation of TKF influenced the behaviour of the polyamide with respect to its water absorption, load-carrying capacity, and thermal stability. The result further demonstrated that the load-bearing capacity peaked at TKF 40 wt.%, surpassing conventional wooden and concrete sleepers. However, its water absorption (64-days saturation) behaviour increased significantly between 11%–21% as TKF rose from 10–50 wt.%, as expected due to TKF hydrophilic characteristics. On the other hand, TKF thermal stability was hampered beyond approximately 220°C for all TKF percentages. Kenaf fibre-reinforced polyamide biocomposites have demonstrated their potential for railway sleeper applications as their load-bearing capacity exceeded the minimum recommended AREMA specifications. Despite the milestone achieved, water absorption of kenaf fibre remained high. The development of sustainable and effective materials to meet the changing needs of contemporary railway infrastructure is greatly aided by the insights gained from this study.

  • 12856-1, I. (2014). Plastics - Plastic railway sleepers for railway applications. (Railroad Ties) - Part 1: Material Characteristics, 29. https://knowledge.bsigroup.com/products/railway-applications-polymeric-composite-sleepers-bearers-and-transoms-material-characteristics?version=standard

  • Abdullah, N., Abdan, K., Lee, C. H., Mohd Roslim, M. H., Radzuan, M. N., & Shafi, A. R. (2022). Thermal properties of wood flour reinforced polyamide 6 biocomposites by twin screw extrusion. Physical Sciences Reviews, 8(12), 5153-5164. https://doi.org/10.1515/psr-2022-0082

  • Agnantopoulou, E., Barboutis, I., & Kamperidou, V. (2023). Wood utilisation in windmill mechanisms on Sikinos Island (Greece). Applied Sciences, 13(16), 9216. https://doi.org/10.3390/app13169216

  • Almeida, P. de O., Gerardo, C. F., Leão, A. G. de, França, S. C. A., Santos, S. F., & Bastos, D. C. (2021). Sustainable composites based on recycled high-density polyethylene/mica. Materials Research, 24(2), e20200418. https://doi.org/10.1590/1980-5373-mr-2020-0418

  • Arema, L. M. D. (2013). American railway engineering and maintenance-of-way association. Manual for Railway Engineering, 2, 55-57.

  • Askarinejad, H., Barati, P., Dhanasekar, M., & Gallage, C. (2018). Field studies on sleeper deflection and ballast pressure in heavy haul track. Australian Journal of Structural Engineering, 19(2), 96-104. https://doi.org/10.1080/13287982.2018.1444335

  • ASTM D790-10.. (2010). Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. Annual Book of ASTM Standards. https://doi.org/10.1520/d0790-10 https://www.astm.org/d0790-10.html

  • Atikler, U., Basalp, D., & Tihminliouglu, F. (2006). Mechanical and morphological properties of recycled high-density polyethylene, filled with calcium carbonate and fly ash. Journal of Applied Polymer Science, 102(5), 4460-4467. https://doi.org/10.1002/app.24772

  • Axion. (2022). ECOTRAX Composite Railroad Ties. https://axionsi.com/products/ecotrax-railroad/ [Viewed October15, 2022].

  • Bartczak, Z., Argon, A. S., Cohen, R. E., & Weinberg, M. (1999). Toughness mechanism in semi-crystalline polymer blends: II. High-density polyethylene toughened with calcium carbonate filler particles. Polymer, 40(9), 2347-2365. https://doi.org/10.1016/s0032-3861(98)00444-3

  • Bijwe, J., Indumathi, J., & Ghosh, A. K. (2002). On the abrasive wear behaviour of fabric-reinforced polyetherimide composites. Wear, 253(7-8), 768-777.https://doi.org/10.1016/s0043-1648(02)00169-2

  • Bujjibabu, G., Das, V. C., Ramakrishna, M., & Nagarjuna, K. (2018). Mechanical and water absorption behavior of natural fibres reinforced polypropylene hybrid composites. Materials Today: Proceedings, 5(5), 12249-12256. https://doi.org/10.1016/j.matpr.2018.02.202

  • Casado, J. A., Gutiérrez-Solana, F., Carrascal, I., Diego, S., Polanco, J. A., & Hernández, D. (2016). Fatigue behavior enhancement of short fibre glass reinforced polyamide by adding phase change materials. Composites Part B: Engineering, 93, 115-122. https://doi.org/10.1016/j.compositesb.2016.02.059

  • Esmaeili, M. H., Norouzi, H., & Niazi, F. (2023). Evaluation of mechanical and performance characteristics of a new composite railway sleeper made from recycled plastics, mineral fillers and industrial wastes. Composites Part B: Engineering, 254, 110581. https://doi.org/10.1016/j.compositesb.2023.110581

  • Evertrak. (2023). Evertrak 7000. www.evertrak.com

  • Harsha, A. P., & Tewari, U. S. (2003). Two-body and three-body abrasive wear behaviour of polyaryletherketone composites. Polymer Testing, 22(4), 403-418. https://doi.org/10.1016/s0142-9418(02)00121-6

  • Hirçin, B. Ş., Yörür, H., & Mengelouglu, F. (2021). Effects of filler type and content on the mechanical, morphological, and thermal properties of waste casting polyamide 6 (W-PA6G)-based wood plastic composites. BioResources, 16(1), 655. https://doi.org/10.15376/biores.16.1.655-668

  • Hwang, C., Han, W., Gwak, I., & Back, I. (2019). Development of polyurethane-based composite material technology for the manufacturing synthetic compound sleeper products. Journal of the Korean Society for Advanced Composite Structures, 10(5), 1-7. https://doi.org/10.11004/kosacs.2019.10.5.001

  • Integrated Recycling Pty Ltd. (2022). DuraTrack: Engineered recycled platic railway sleepers. https://www.integratedrecycling.com.au/duratrack-railway-sleepers-2/ [Viewed August 12, 2024].

  • IntegriCo. (2022). IntegriTies. https%22//www.integrico.com/integrities [Viewed October 15, 2022].

  • ISO 62. (2008). Plastics - Determination of water absorption. 15.https://doi.org/10.3403/01668657u

  • Jing, G., Yunchang, D., You, R., & Siahkouhi, M. (2022). Comparison study of crack propagation in rubberised and conventional prestressed concrete sleepers using digital image correlation. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 236(4), 350-361. https://doi.org/10.1177/09544097211020595

  • Jokūbaitis, A., Marčiukaitis, G., & Valivonis, J. (2020). Experimental research on the behavior of the rail seat section of different types of prestressed concrete sleepers. Materials, 13(11), 2432. https://doi.org/10.3390/ma13112432

  • Kaewunruen, S. (2015). Acoustic and dynamic characteristics of a complex urban turnout using fibre-reinforced foamed urethane (FFU) bearers. In J. C. O. Nielsen, D. A. P-E Gautier, M. J. T. Nelson, D. T. T. Tielkes, & D. A. T. Paul de Vos (Eds.), Noise and vibration mitigation for rail transportation systems: Proceeding of the 11th International Workshop on Railway Noise (pp. 377-384). Springer. https://doi.org/10.1007/978-3-662-44832-8_45

  • Karthi, N., Kumaresan, K., Sathish, S., Gokulkumar, S., Prabhu, L., & Vigneshkumar, N. (2020). An overview: Natural fibre reinforced hybrid composites, chemical treatments and application areas. Materials Today: Proceedings, 27, 2828-2834. https://doi.org/10.1016/j.matpr.2020.01.011

  • Khalil, A. A. (2018). Mechanical testing of innovated composite polymer material for using in manufacture of railway sleepers. Journal of Polymers and the Environment, 26(1), 263-274. https://doi.org/10.1007/s10924-017-0940-6

  • Khalil, A. A., Bakry, H. M., Riad, H. S., & Shnour, A. S. (2019). Analysis on railway sleepers manufactured from polymers and iron slag. Journal of Al-Azhar University Engineering Sector, 12(43), 620-639. https://doi.org/10.21608/auej.2017.19251

  • Kiziltas, E. E., Yang, H.-S., Kiziltas, A., Boran, S., Ozen, E., & Gardner, D. J. (2016). Thermal analysis of polyamide 6 composites filled by natural fibre blend. BioResources, 11(2), 4758-4769. https://doi.org/10.15376/biores.11.2.4758-4769

  • KLP Main Track Sleeper - Sustainable Plastic Railway Solutions. (2014). LHR. www.lankhorstrail.com.

  • Koller, G. (2015). FFU synthetic sleeper - Projects in Europe. Construction and Building Materials, 92, 43-50. https://doi.org/10.1016/j.conbuildmat.2015.03.118

  • Lee, I.-W., Pyo, S., & Jung, Y.-H. (2016). Development of quick-hardening infilling materials for composite railroad tracks to strengthen existing ballasted track. Composites Part B: Engineering, 92, 37-45. https://doi.org/10.1016/j.compositesb.2016.02.042

  • Lu, S., & Forcada, J. (2006). Preparation and characterisation of magnetic polymeric composite particles by miniemulsion polymerisation. Journal of Polymer Science Part A: Polymer Chemistry, 44(13), 4187-4203. https://doi.org/10.1002/pola.21525

  • Manalo, A., & Aravinthan, T. (2012). Behavior of full-scale railway turnout sleepers from glue-laminated fibre composite sandwich structures. Journal of Composites for Construction, 16(6), 724-736. https://doi.org/10.1061/(asce)cc.1943-5614.0000307

  • Maslinda, A. B., Majid, M. S. A., Ridzuan, M. J. M., & Syayuthi, A. R. A. (2017). Water absorption behaviour of hybrid interwoven cellulosic fibre composites. Journal of Physics: Conference Series, 908(1), 12015. https://doi.org/10.1088/1742-6596/908/1/012015

  • Mochane, M. J., Mokhena, T. C., Mokhothu, T. H., Mtibe, A., Sadiku, E. R., Ray, S. S., Ibrahim, I. D., & Daramola, O. O. (2019). Recent progress on natural fibre hybrid composites for advanced applications: A review. eXPRESS Polymer Letter 13(2), 159-198. https://doi.org/10.3144/expresspolymlett.2019.15

  • Nurazzi, N. M., Asyraf, M. R. M., Fatimah Athiyah, S., Shazleen, S. S., Rafiqah, S. A., Harussani, M. M., Kamarudin, S. H., Razman, M. R., Rahmah, M., Zainudin, E. S., & others. (2021). A review on mechanical performance of hybrid natural fibre polymer composites for structural applications. Polymers, 13(13), 2170. https://doi.org/10.3390/polym13132170

  • Ratanawilai, T., & Taneerat, K. (2018). Alternative polymeric matrices for wood-plastic composites: Effects on mechanical properties and resistance to natural weathering. Construction and Building Materials, 172, 349-357. https://doi.org/10.1016/j.conbuildmat.2018.03.266

  • Rozali, N. A., Abu Bakar, M. B., Masri, M. N., Sulaiman, M. A., Mohamed, M., & Thirmizir, M. Z. A. (2017). Mechanical and water absorption properties of hybrid Kenaf/Glass fibre mat reinforced unsaturated polyester composites. Materials Science Forum, 888, 228-233. https://doi.org/10.4028/www.scientific.net/msf.888.228

  • Shireesha, Y., Nandipati, G., & Chandaka, K. (2019). Properties of hybrid composites and its applications: A brief review. International Journal of Scientific & Technology Research, 8(8), 335-341.

  • Siahkouhi, M., Li, X., Han, X., & Jing, G. (2022a). Improving the mechanical performance of timber railway sleepers with carbon fabric reinforcement: An experimental and numerical study. Journal of Composites for Construction, 26(1), 4021064. https://doi.org/10.1061/(asce)cc.1943-5614.0001178

  • Siahkouhi, M., Li, X., Han, X., Kaewunruen, S., & Jing, G. (2022b). Experimental and finite element assessments of the fastening system of fibre-reinforced foamed urethane (FFU) composite sleepers. Engineering Failure Analysis, 141, 106693. https://doi.org/10.1016/j.engfailanal.2022.106693

  • Sicut Enterprises Ltd. (2022). Railway Sleepers. Viewed October 15, https://sicut.co.uk/standard-sleeper-tie/

  • Son, J., Kim, H.-J., & Lee, P.-W. (2001). Role of paper sludge particle size and extrusion temperature on performance of paper sludge-thermoplastic polymer composites. Journal of Applied Polymer Science, 82(11), 2709-2718. https://doi.org/10.1002/app.2123

  • Syduzzaman, M., Al Faruque, M. A., Bilisik, K., & Naebe, M. (2020). Plant-based natural fibre reinforced composites: a review on fabrication, properties and applications. Coatings, 10(10), 973. https://doi.org/10.3390/coatings10100973

  • Takai, H., Sato, Y., & Sato, K. (2006). Japanese twenty five years experiences and standardisation of synthetic sleeper. JIS, 100, 2110.

  • TieTek. (2022). TieTek. Improve Track Performance over Time with TieTek TM Composite Ties. http://www.tietek.net/specsheets.asp [Viewed August 12, 2024].

  • TVEMA. (2022). Composite Sleepers. Viewed Oct. 15, https://tvema.com/651

  • Xu, K., Zheng, Z., Du, G., Zhang, Y., Wang, Z., Zhong, T., Xie, L., & Wang, S. (2019). Effects of polyamide 6 reinforcement on the compatibility of high-density polyethylene/environmental-friendly modified wood fibre composites. Journal of Applied Polymer Science, 136(38), 47984. https://doi.org/10.1002/app.47984

  • Yang, H.-S., Kim, H.-J., Park, H.-J., Lee, B.-J., & Hwang, T.-S. (2006). Water absorption behavior and mechanical properties of lignocellulosic filler--polyolefin bio-composites. Composite Structures, 72(4), 429-437. https://doi.org/10.1016/j.compstruct.2005.01.013

  • Yang, K., Yang, Q., Li, G., Zhang, Y., & Zhang, P. (2007). Mechanical properties and morphologies of polypropylene/single-filler or hybrid-filler calcium carbonate composites. Polymer Engineering & Science, 47(2), 95-102. https://doi.org/10.1002/pen.20677

  • Yu, P., Manalo, A., Ferdous, W., Abousnina, R., Salih, C., Heyer, T., & Schubel, P. (2021). Investigation on the physical, mechanical and microstructural properties of epoxy polymer matrix with crumb rubber and short fibres for composite railway sleepers. Construction and Building Materials, 295, 123700. https://doi.org/10.1016/j.conbuildmat.2021.123700

  • Zeng, Z., Shuaibu, A. A., Liu, F., Ye, M., & Wang, W. (2020). Experimental study on the vibration reduction characteristics of the ballasted track with rubber composite sleepers. Construction and Building Materials, 262, 120766. https://doi.org/10.1016/j.conbuildmat.2020.120766

  • Zhang, D., Gao, C., Hao, X., Chen, A., Jing, G., Zhang, X., Wu, Y., & Li, X. (2022). Development of composite materials using recycled hdpe plastic for railway sleepers. Available at SSRN 4134231. https://doi.org/10.2139/ssrn.4134231

  • Zhao, J., Chan, A. H. C., & Burrow, M. P. N. (2007). Reliability analysis and maintenance decision for railway sleepers using track condition information. Journal of the Operational Research Society, 58(8), 1047-1055. https://doi.org/10.1057/palgrave.jors.2602251

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST(S)-0634-2024

Download Full Article PDF

Share this article

Recent Articles