PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Special Issue / JST Vol. 32 (S5) 2024 / JST(S)-0632-2024

 

A Comparative Analysis Review of Plant Fibres in Advanced Bio-based Material for Sustainable Drone Construction

Farah Syazwani Shahar and Mohamed Thariq Hameed Sultan

Pertanika Journal of Science & Technology, Volume 32, Issue S5, December 2024

DOI: https://doi.org/10.47836/pjst.32.S5.05

Keywords: Drone construction, material circularity, plant fibres, sustainable drone

Published on: 30 October 2024

As researchers’ awareness of ecological impact and climate change increases, several solutions were proposed to help reduce carbon emissions and promote the circularity of materials. Drones technology can help monitor the environment since it can cover a large area, collect real-time images and data, and operate in dangerous environments. Also, the drone’s ecological factor could be further increased by its construction itself. Thus, many researchers are trying to develop a sustainable drone using plant fibres to reduce carbon emissions and ensure the circularity of materials. This review mainly compares the drones made from plant fibres and traditional materials such as plastics and synthetic fibres. This review also includes the introduction of material circularity, the drone’s role in helping ensure material circularity and environment safety, and the advantages and disadvantages of the drone materials. The review will also compare the drone performances made from different bio-based materials with conventional ones. Plant fibres’ role in drone construction significantly contributes to reducing carbon emissions and ensuring the circularity of materials. With drone construction paving the way for other critical structural applications, there is a possibility that plant fibres will soon become the most significant raw material for sustainable products.

  • Abdullahi, M. (2020). Dynamic mechanical properties of epoxy resin matrix reinforced with sugarcane bagasse. International Journal of Chemistry and Technology, 4(1), 43-48. https://doi.org/10.32571/ijct.694558

  • Abral, H., Andriyanto, H., Samera, R., Sapuan, S. M., & Ishak, M. R. (2012). Mechanical properties of screw pine (Pandanus odoratissimus) fibers-unsaturated polyester composites. Polymer - Plastics Technology and Engineering, 51(5), 500-506. https://doi.org/10.1080/03602559.2011.651246

  • Agung, E. H., Hamdan, M. H. M., Siregar, J. P., Bachtiar, D., Tezara, C., & Jamiluddin, J. (2018). Water absorption behaviour and mechanical performance of pineapple leaf fibre reinforced polylactic acid composites. International Journal of Automotive and Mechanical Engineering, 15(4), 5760-5774. https://doi.org/10.15282/ijame.15.4.2018.4.0441

  • Ahmed, M. M., Dhakal, H. N., Zhang, Z. Y., Barouni, A., & Zahari, R. (2021). Enhancement of impact toughness and damage behaviour of natural fibre reinforced composites and their hybrids through novel improvement techniques: A critical review. Composite Structures, 259, 113496. https://doi.org/10.1016/j.compstruct.2020.113496

  • Alao, P. F., Marrot, L., Kallakas, H., Just, A., Poltimäe, T., & Kers, J. (2021). Effect of hemp fiber surface treatment on the moisture/water resistance and reaction to fire of reinforced pla composites. Materials, 14(15), 4332. https://doi.org/10.3390/ma14154332

  • Almeida Coco, A., Duhamel, C., Santos, A. C., & Haddad, M. N. (2024). Solving the probabilistic drone routing problem: Searching for victims in the aftermath of disasters. Networks, 84(1), 31-50. https://doi.org/10.1002/net.22214

  • Anand, S., & Mishra, A. K. (2022). High-performance materials used for UAV manufacturing: Classified review. International Journal of All Research Education and Scientific Methods (IJARESM), 10(7), 2455-6211.

  • Azman, M. A., Asyraf, M. R. M., Khalina, A., Petrů, M., Ruzaidi, C. M., Sapuan, S. M., Wan Nik, W. B., Ishak, M. R., Ilyas, R. A., & Suriani, M. J. (2021). Natural fiber reinforced composite material for product design: A short review. Polymers, 13(12), 1917. https://doi.org/10.3390/polym13121917

  • Bollard, B., Doshi, A., Gilbert, N., Poirot, C., & Gillman, L. (2022). Drone technology for monitoring protected areas in remote and fragile environments. Drones, 6(2), 42. https://doi.org/10.3390/drones6020042

  • Breznik, M. (2021). Bio-degradable natural fiber composite drone. Hackaday.Io. https://hackaday.io/project/178784-bio-degradable-natural-fiber-composite-drone

  • Chi, N. T. K., Phong, L. T., & Hanh, N. T. (2023). The drone delivery services: An innovative application in an emerging economy. Asian Journal of Shipping and Logistics, 39(2), 39-45. https://doi.org/10.1016/j.ajsl.2023.01.002

  • Curbell Plastics. (2023). Marine ROVS (Remotely Operated Vehicles). Curbellplastics.com. https://www.curbellplastics.com/materials/industries/marine-rovs-remotely-operated-vehicles/

  • Dev, P. K., Balaji, C., & Gurusideswar, S. (2022). Material characterization of sugarcane bagasse/epoxy composites for drone frame material. Materials Today: Proceedings, 68, 2586-2590. https://doi.org/10.1016/j.matpr.2022.10.114

  • Elfaleh, I., Abbassi, F., Habibi, M., Ahmad, F., Guedri, M., Nasri, M., & Garnier, C. (2023). A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials. Results in Engineering, 19, 101271. https://doi.org/10.1016/j.rineng.2023.101271

  • Fajrin, J., Akmaluddin, A., & Gapsari, F. (2022). Utilization of kenaf fiber waste as reinforced polymer composites. Results in Engineering, 13, 100380. https://doi.org/10.1016/j.rineng.2022.100380

  • Ferreira, J. M., Capela, C., Manaia, J., & Costa, J. D. (2016). Mechanical properties of woven mat jute/epoxy composites. Materials Research, 19(3), 702-710. https://doi.org/10.1590/1980-5373-MR-2015-0422

  • Geoff Poulton. (2017, February 18). Aviation’s material evolution. Airbus.com. https://www.airbus.com/en/newsroom/news/2017-02-aviations-material-evolution

  • Gerald Arul Selvan, M. T., Binoj, J. S., Mansingh, B. B., & Baby Sajin, J. A. (2023). Physico-chemical properties of alkali treated cellulosic fibers from fragrant screw pine prop root. Journal of Natural Fibers, 20(1), 148-161. https://doi.org/10.1080/15440478.2022.2129897

  • Habib, S. (2023). Plastics used in drones. PlasticRanger.com. https://plasticranger.com/plastics-used-in-drones/

  • Haomei Aluminium. (2023). The development history of aircraft aluminium. Aircraftaluminium.com. https://www.aircraftaluminium.com/a/the-development-history-of-aircraft-aluminium.html

  • Harris, B. (2020). How AI-powered drones are helping fight ocean plastic. World Economic Forum.

  • Harussani, M. M., Sapuan, S. M., Nadeem, G., Rafin, T., & Kirubaanand, W. (2022). Recent applications of carbon-based composites in defence industry: A review. Defence Technology, 18(8), 1281-1300. https://doi.org/10.1016/j.dt.2022.03.006

  • Hexcel. (2023). Unmanned Aerial Vehicles (UAVs). Hexcel.com. https://www.hexcel.com/Resources/UAV

  • Jacobs, C., Soulliere, K., Sawyer-Beaulieu, S., Sabzwari, A., & Tam, E. (2022). Challenges to the circular economy: Recovering wastes from simple versus complex products. Sustainability (Switzerland), 14(5), 2576. https://doi.org/10.3390/su14052576

  • Jayakumar, S. S., Subramaniam, I. P., Stanislaus Arputharaj, B., Solaiappan, S. K., Rajendran, P., Lee, I. E., Madasamy, S. K., Gnanasekaran, R. K., Karuppasamy, A., & Raja, V. (2024). Design, control, aerodynamic performances, and structural integrity investigations of compact ducted drone with co-axial propeller for high altitude surveillance. Scientific Reports, 14(1), 6330. https://doi.org/10.1038/s41598-024-54174-x

  • Jonckers, D., Tauscher, O., Thakur, A. R., & Maywald, L. (2022). Additive manufacturing of large structures using free-flying satellites. Frontiers in Space Technologies, 3, 879542. https://doi.org/10.3389/frspt.2022.879542

  • Kirchherr, J., Yang, N. H. N., Schulze-Spüntrup, F., Heerink, M. J., & Hartley, K. (2023). Conceptualizing the circular economy (Revisited): An analysis of 221 definitions. Resources, Conservation and Recycling, 194, 107001. https://doi.org/10.1016/j.resconrec.2023.107001

  • Kiron, M. I. (2021). Kenaf fiber: Properties, cultivation, production, uses and advantages. Textile Learner. https://textilelearner.net/kenaf-fiber-properties/

  • Lawson, L., Degenstein, L. M., Bates, B., Chute, W., King, D., & Dolez, P. I. (2022). Cellulose textiles from hemp biomass: Opportunities and challenges. Sustainability (Switzerland), 14(22), 15337. https://doi.org/10.3390/su142215337

  • Maiti, S., Islam, M. R., Uddin, M. A., Afroj, S., Eichhorn, S. J., & Karim, N. (2022). Sustainable fiber-reinforced composites: A review. Advanced Sustainable Systems, 6(11), 2200258. https://doi.org/10.1002/adsu.202200258

  • Masoodi, R., & Pillai, K. M. (2012). A study on moisture absorption and swelling in bio-based jute-epoxy composites. Journal of Reinforced Plastics and Composites, 31(5), 285-294. https://doi.org/10.1177/0731684411434654

  • MatWeb. (2023a). Overview of materials for Acrylonitrile Butadiene Styrene (ABS), molded. Matweb.com. https://www.matweb.com/search/DataSheet.aspx?MatGUID=eb7a78f5948d481c9493a67f0d089646

  • MatWeb. (2023b). Overview of materials for epoxy/carbon fiber composite. Matweb.com. https://www.matweb.com/search/DataSheet.aspx?MatGUID=39e40851fc164b6c9bda29d798bf3726&ckck=1

  • MatWeb. (2023c). Overview of materials for polyamide-imide, ,olded. Matweb.com. https://www.matweb.com/search/DataSheet.aspx?MatGUID=1ca9588da84640d199959da7c00a6083

  • MatWeb. (2023d). Overview of materials for polycarbonate, molded. Matweb.com. https://www.matweb.com/search/DataSheet.aspx?MatGUID=84b257896b674f93a39596d00d999d77

  • MatWeb. (2023e). Overview of materials for polypropylene, molded. Matweb.com. https://www.matweb.com/search/DataSheet.aspx?MatGUID=08fb0f47ef7e454fbf7092517b2264b2

  • MatWeb. (2023f). Solvay CYCOM® 5216 Epoxy - Woven Aramid Fiber Prepreg. Matweb.com. https://www.matweb.com/search/DataSheet.aspx?MatGUID=d5c0a5688cdd434fb4c5b3768939d1af

  • Mesquita, R. G. de A., César, A. A. da S., Mendes, R. F., Mendes, L. M., Marconcini, J. M., Glenn, G., & Tonoli, G. H. D. (2017). Polyester composites reinforced with corona-treated fibers from pine, eucalyptus and sugarcane bagasse. Journal of Polymers and the Environment, 25(3), 800-811. https://doi.org/10.1007/s10924-016-0864-6

  • Mishra, A., Pal, S., & Singh, P. (2022). Design and analysis of an Eight Rotor Co-Axial UAV using carbon fiber composites. Materials Today: Proceedings, 68, 1011-1015. https://doi.org/10.1016/j.matpr.2022.08.206

  • Mitchell, S., Steinbach, J., Flanagan, T., Ghabezi, P., Harrison, N., O’Reilly, S., Killian, S., & Finnegan, W. (2022). Evaluating the sustainability of lightweight drones for delivery: Towards a suitable methodology for assessment. ECCM 2022 - Proceedings of the 20th European Conference on Composite Materials: Composites Meet Sustainability, 6, 355-362. https://doi.org/10.1186/s42252-023-00040-4

  • Mohammed, M., Jawad, A. J. M., Mohammed, A. M., Oleiwi, J. K., Adam, T., Osman, A. F., Dahham, O. S., Betar, B. O., Gopinath, S. C. B., & Jaafar, M. (2023). Challenges and advancement in water absorption of natural fiber-reinforced polymer composites. Polymer Testing, 124, 108083. https://doi.org/10.1016/j.polymertesting.2023.108083

  • Moraga, G., Huysveld, S., De Meester, S., & Dewulf, J. (2021). Development of circularity indicators based on the in-use occupation of materials. Journal of Cleaner Production, 279, 123889. https://doi.org/10.1016/j.jclepro.2020.123889

  • Naik, V., Kumar, M., & Kaup, V. (2021). Study on the mechanical properties of alkali treated screw pine root fiber reinforced in epoxy matrix composite material. AIP Conference Proceedings, 2317(1), 020023. https://doi.org/10.1063/5.0036136

  • Parveez, B., Kittur, M. I., Badruddin, I. A., Kamangar, S., Hussien, M., & Umarfarooq, M. A. (2022). Scientific advancements in composite materials for aircraft applications: A review. Polymers, 14(22), 5007. https://doi.org/10.3390/polym14225007

  • Patil, S. A., Shinge, P. R., Kale, A. N., Antad, S. R., & Hatgine, R. A. (2023). Photography and videography drone. International Research Journal of Modernization in Engineering Technology and Science, 5(5), 2416-2419. https://doi.org/10.56726/IRJMETS34742

  • Pelin, C. E., Sonmez, M., Pelin, G., Stefan, A., Stelescu, M. D., Ignat, M., Gurau, D., Georgescu, M., & Nituica, M. (2024). Composites based on polymeric blends reinforced with TiO2 modified aramid fibers. Polymer Composites, 45(8), 7116-7136. https://doi.org/10.1002/pc.28254

  • Perdana, M., Prastiawan, P., & Hadi, S. (2017). Mechanical properties of composite waste material based styrofoam, baggase and eggshell powder for application of drone frames. IOP Conference Series: Earth and Environmental Science, 97(1), 1-7. https://doi.org/10.1088/1755-1315/97/1/012034

  • Perikleous, D., Koustas, G., Velanas, S., Margariti, K., Velanas, P., & Gonzalez-Aguilera, D. (2024). A novel drone design based on a reconfigurable unmanned aerial vehicle for wildfire management. Drones, 8(5), 203. https://doi.org/10.3390/drones8050203

  • Prasad, L., Kumar, S., Patel, R. V., Yadav, A., Kumar, V., & Winczek, J. (2020). Physical and mechanical behaviour of sugarcane bagasse fibre-reinforced epoxy bio-composites. Materials, 13(23), 1-13. https://doi.org/10.3390/ma13235387

  • Rahman, M. Z. M. A., & Ariffin, A. H. (2022). Mechanical properties of hybrid kenaf - Pineapple Leaf Fibre (PALF) epoxy composite for engineering application. Progress in Aerospace and Aviation Technology, 2(1), 26-32. https://doi.org/10.30880/paat.2022.02.01.004

  • Raj, R. J., Panneer Selvam, P., & Pughalendi, M. (2021). A review of aluminum alloys in aircraft and aerospace industry aerodynamic. Journal of Huazhong University of Science and Technology, 50(4), 1-10. https://www.researchgate.net/publication/352281767

  • Rajak, D. K., Wagh, P. H., & Linul, E. (2022). A review on synthetic fibers for polymer matrix composites: Performance, failure modes and applications. Materials, 15(14), 4790. https://doi.org/10.3390/ma15144790

  • Rajak D. K, Pagar D. D., Menezes P. L., & Linul, E. (2019). Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers, 10, 16-67.

  • Rangel-Buitrago, N., & Neal, W. J. (2023). A geological perspective of plastic pollution. Science of the Total Environment, 893, 164867. https://doi.org/10.1016/j.scitotenv.2023.164867

  • Raut, R., Jadhav, S., & Jadhav, N. B. (2024). Design of hexacopter and finite element analysis for material selection. International Journal of Intelligent Unmanned Systems, 12(2), 192-219. https://doi.org/10.1108/IJIUS-03-2023-0033

  • Rejeb, A., Rejeb, K., Simske, S. J., & Treiblmaier, H. (2023). Drones for supply chain management and logistics: a review and research agenda. International Journal of Logistics Research and Applications, 26(6), 708-731. https://doi.org/10.1080/13675567.2021.1981273

  • Reports and Data. (2020). Aerospace and defence - Unmanned composites market. https://www.reportsanddata.com/report-detail/unmanned-composites-market#:~:text=Market Summary,at a CAGR of 16.8 %25.

  • Rozi, N. M., Abdul Hamid, Hamidah Hossain, M. S., Khalil, N. A., Ahmad Yahaya, A. N., Fizal, A. N. S., Haris, M. Y., Ahmad, N., & Zulkifli, M. (2021). Enhanced mechanical and thermal properties of modified oil palm fiber-reinforced polypropylene composite via multi-objective optimization of in situ silica sol-gel synthesis. Polymers, 13(19), 3338. https://doi.org/10.3390/polym13193338

  • Sahari, J., & Maleque, M. A. (2016). Mechanical properties of oil palm shell composites. International Journal of Polymer Science, 2016(1), 7457506. https://doi.org/10.1155/2016/7457506

  • Sahoo, P., Saini, L., & Dixit, A. (2023). Microwave-absorbing materials for stealth application: A holistic overview. Oxford Open Materials Science, 3(1), itac012. https://doi.org/10.1093/oxfmat/itac012

  • Sahu, P., & Gupta, M. K. (2020). Lowering in water absorption capacity and mechanical degradation of sisal/epoxy composite by sodium bicarbonate treatment and PLA coating. Polymer Composites, 41(2), 668-681. https://doi.org/10.1002/pc.25397

  • Shinoj, S., Visvanathan, R., Panigrahi, S., & Kochubabu, M. (2011). Oil palm fiber (OPF) and its composites: A review. Industrial Crops and Products, 33(1), 7-22. https://doi.org/10.1016/j.indcrop.2010.09.009

  • Shortland, R. (2023). Speed, strength, and safety: The importance of plastics in formula one. British Plastic Federation. https://www.bpf.co.uk/article/plastics-in-formula-one-3292.aspx

  • Siddique, S. H., Faisal, D. S., Zahid, B., & Wang, C. (2021). Tensile properties of bagasse fiber composites. Mehran University Research Journal of Engineering and Technology, 40(3), 502-511. https://doi.org/10.22581/muet1982.2103.05

  • Siengchin, S. (2023). A review on lightweight materials for defence applications: Present and future developments. Defence Technology, 24, 1-17. https://doi.org/10.1016/j.dt.2023.02.025

  • Siregar, J. P., Cionita, T., Bachtiar, D., & Rejab, M. R. M. (2014). Tensile properties of pineapple leaf fibre reinforced unsaturated polyester composites. Applied Mechanics and Materials, 695, 159-162. https://doi.org/10.4028/www.scientific.net/amm.695.159

  • Sliusar, N., Filkin, T., Huber-Humer, M., & Ritzkowski, M. (2022). Drone technology in municipal solid waste management and landfilling: A comprehensive review. Waste Management, 139, 1-16. https://doi.org/10.1016/j.wasman.2021.12.006

  • Sujon, M. A. S., Habib, M. A., & Abedin, M. Z. (2020). Experimental investigation of the mechanical and water absorption properties on fiber stacking sequence and orientation of jute/carbon epoxy hybrid composites. Journal of Materials Research and Technology, 9(5), 10970-10981. https://doi.org/10.1016/j.jmrt.2020.07.079

  • Tahir, H. R., Malengier, B., Van Daele, D., & Van Langenhove, L. (2022). Validation of a textile material’s electrostatic characterization device for different parameters and their effect on the electrostatic charge generation. Materials, 15(16), 5716. https://doi.org/10.3390/ma15165716

  • Thyavihalli Girijappa, Y. G., Mavinkere Rangappa, S., Parameswaranpillai, J., & Siengchin, S. (2019). Natural fibers as sustainable and renewable resource for development of eco-friendly composites: A comprehensive review. Frontiers in Materials, 6, 226. https://doi.org/10.3389/fmats.2019.00226

  • Tretkoff, E. (2006). November 1783: Intrepid physicist is first to fly. American Physical Society, 15(10). https://www.aps.org/publications/apsnews/200611/history.cfm

  • Vigneswaran, C., Ananthasubramanian, M., & Kandhavadivu, P. (2014). Bioprocessing of synthetic fibres. Bioprocessing of Textiles, 189-250. https://doi.org/10.1016/b978-93-80308-42-5.50004-4

  • Yahaya, R., Sapuan, S. M., Jawaid, M., Leman, Z., & Zainudin, E. S. (2016). Water absorption behaviour and impact strength of Kenaf-Kevlar reinforced epoxy hybrid composites. Advanced Composites Letters, 25(4), 98-102. https://doi.org/10.1177/096369351602500403

  • Yew, B. S., Muhamad, M., Mohamed, S. B., & Wee, F. H. (2019). Effect of alkaline treatment on structural characterisation, thermal degradation and water absorption ability of coir fibre polymer composites. Sains Malaysiana, 48(3), 653-659. https://doi.org/10.17576/jsm-2019-4803-19

  • Zainol, I. S., Aidil, K., Rahman, A. A., & Ramli, S. H. (2016). Conceptual framwork of screw pine leaves biocomposite for furniture component. 2nd International Conference On Creative Media, Design & Technology (REKA2016). http://eprints.usm.my/39327/1/PAPER_49.pdf

  • Zhang, J., Lin, G., Vaidya, U., & Wang, H. (2023). Past, present and future prospective of global carbon fibre composite developments and applications. Composites Part B: Engineering, 250, 110463. https://doi.org/10.1016/j.compositesb.2022.110463

  • Zhou, S., Chen, X., Huang, R., Lin, Y., & Ye, X. (2022). Interfacial treatment-induced high-strength plant fiber/phenolic resin composite. Frontiers in Materials, 9, 10722249. https://doi.org/10.3389/fmats.2022.1072249

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST(S)-0632-2024

Download Full Article PDF

Share this article

Recent Articles