e-ISSN 2231-8526
ISSN 0128-7680
Farah Syazwani Shahar and Mohamed Thariq Hameed Sultan
Pertanika Journal of Science & Technology, Volume 32, Issue S5, December 2024
DOI: https://doi.org/10.47836/pjst.32.S5.05
Keywords: Drone construction, material circularity, plant fibres, sustainable drone
Published on: 30 October 2024
As researchers’ awareness of ecological impact and climate change increases, several solutions were proposed to help reduce carbon emissions and promote the circularity of materials. Drones technology can help monitor the environment since it can cover a large area, collect real-time images and data, and operate in dangerous environments. Also, the drone’s ecological factor could be further increased by its construction itself. Thus, many researchers are trying to develop a sustainable drone using plant fibres to reduce carbon emissions and ensure the circularity of materials. This review mainly compares the drones made from plant fibres and traditional materials such as plastics and synthetic fibres. This review also includes the introduction of material circularity, the drone’s role in helping ensure material circularity and environment safety, and the advantages and disadvantages of the drone materials. The review will also compare the drone performances made from different bio-based materials with conventional ones. Plant fibres’ role in drone construction significantly contributes to reducing carbon emissions and ensuring the circularity of materials. With drone construction paving the way for other critical structural applications, there is a possibility that plant fibres will soon become the most significant raw material for sustainable products.
Abdullahi, M. (2020). Dynamic mechanical properties of epoxy resin matrix reinforced with sugarcane bagasse. International Journal of Chemistry and Technology, 4(1), 43-48. https://doi.org/10.32571/ijct.694558
Abral, H., Andriyanto, H., Samera, R., Sapuan, S. M., & Ishak, M. R. (2012). Mechanical properties of screw pine (Pandanus odoratissimus) fibers-unsaturated polyester composites. Polymer - Plastics Technology and Engineering, 51(5), 500-506. https://doi.org/10.1080/03602559.2011.651246
Agung, E. H., Hamdan, M. H. M., Siregar, J. P., Bachtiar, D., Tezara, C., & Jamiluddin, J. (2018). Water absorption behaviour and mechanical performance of pineapple leaf fibre reinforced polylactic acid composites. International Journal of Automotive and Mechanical Engineering, 15(4), 5760-5774. https://doi.org/10.15282/ijame.15.4.2018.4.0441
Ahmed, M. M., Dhakal, H. N., Zhang, Z. Y., Barouni, A., & Zahari, R. (2021). Enhancement of impact toughness and damage behaviour of natural fibre reinforced composites and their hybrids through novel improvement techniques: A critical review. Composite Structures, 259, 113496. https://doi.org/10.1016/j.compstruct.2020.113496
Alao, P. F., Marrot, L., Kallakas, H., Just, A., Poltimäe, T., & Kers, J. (2021). Effect of hemp fiber surface treatment on the moisture/water resistance and reaction to fire of reinforced pla composites. Materials, 14(15), 4332. https://doi.org/10.3390/ma14154332
Almeida Coco, A., Duhamel, C., Santos, A. C., & Haddad, M. N. (2024). Solving the probabilistic drone routing problem: Searching for victims in the aftermath of disasters. Networks, 84(1), 31-50. https://doi.org/10.1002/net.22214
Anand, S., & Mishra, A. K. (2022). High-performance materials used for UAV manufacturing: Classified review. International Journal of All Research Education and Scientific Methods (IJARESM), 10(7), 2455-6211.
Azman, M. A., Asyraf, M. R. M., Khalina, A., Petrů, M., Ruzaidi, C. M., Sapuan, S. M., Wan Nik, W. B., Ishak, M. R., Ilyas, R. A., & Suriani, M. J. (2021). Natural fiber reinforced composite material for product design: A short review. Polymers, 13(12), 1917. https://doi.org/10.3390/polym13121917
Bollard, B., Doshi, A., Gilbert, N., Poirot, C., & Gillman, L. (2022). Drone technology for monitoring protected areas in remote and fragile environments. Drones, 6(2), 42. https://doi.org/10.3390/drones6020042
Breznik, M. (2021). Bio-degradable natural fiber composite drone. Hackaday.Io. https://hackaday.io/project/178784-bio-degradable-natural-fiber-composite-drone
Chi, N. T. K., Phong, L. T., & Hanh, N. T. (2023). The drone delivery services: An innovative application in an emerging economy. Asian Journal of Shipping and Logistics, 39(2), 39-45. https://doi.org/10.1016/j.ajsl.2023.01.002
Curbell Plastics. (2023). Marine ROVS (Remotely Operated Vehicles). Curbellplastics.com. https://www.curbellplastics.com/materials/industries/marine-rovs-remotely-operated-vehicles/
Dev, P. K., Balaji, C., & Gurusideswar, S. (2022). Material characterization of sugarcane bagasse/epoxy composites for drone frame material. Materials Today: Proceedings, 68, 2586-2590. https://doi.org/10.1016/j.matpr.2022.10.114
Elfaleh, I., Abbassi, F., Habibi, M., Ahmad, F., Guedri, M., Nasri, M., & Garnier, C. (2023). A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials. Results in Engineering, 19, 101271. https://doi.org/10.1016/j.rineng.2023.101271
Fajrin, J., Akmaluddin, A., & Gapsari, F. (2022). Utilization of kenaf fiber waste as reinforced polymer composites. Results in Engineering, 13, 100380. https://doi.org/10.1016/j.rineng.2022.100380
Ferreira, J. M., Capela, C., Manaia, J., & Costa, J. D. (2016). Mechanical properties of woven mat jute/epoxy composites. Materials Research, 19(3), 702-710. https://doi.org/10.1590/1980-5373-MR-2015-0422
Geoff Poulton. (2017, February 18). Aviation’s material evolution. Airbus.com. https://www.airbus.com/en/newsroom/news/2017-02-aviations-material-evolution
Gerald Arul Selvan, M. T., Binoj, J. S., Mansingh, B. B., & Baby Sajin, J. A. (2023). Physico-chemical properties of alkali treated cellulosic fibers from fragrant screw pine prop root. Journal of Natural Fibers, 20(1), 148-161. https://doi.org/10.1080/15440478.2022.2129897
Habib, S. (2023). Plastics used in drones. PlasticRanger.com. https://plasticranger.com/plastics-used-in-drones/
Haomei Aluminium. (2023). The development history of aircraft aluminium. Aircraftaluminium.com. https://www.aircraftaluminium.com/a/the-development-history-of-aircraft-aluminium.html
Harris, B. (2020). How AI-powered drones are helping fight ocean plastic. World Economic Forum.
Harussani, M. M., Sapuan, S. M., Nadeem, G., Rafin, T., & Kirubaanand, W. (2022). Recent applications of carbon-based composites in defence industry: A review. Defence Technology, 18(8), 1281-1300. https://doi.org/10.1016/j.dt.2022.03.006
Hexcel. (2023). Unmanned Aerial Vehicles (UAVs). Hexcel.com. https://www.hexcel.com/Resources/UAV
Jacobs, C., Soulliere, K., Sawyer-Beaulieu, S., Sabzwari, A., & Tam, E. (2022). Challenges to the circular economy: Recovering wastes from simple versus complex products. Sustainability (Switzerland), 14(5), 2576. https://doi.org/10.3390/su14052576
Jayakumar, S. S., Subramaniam, I. P., Stanislaus Arputharaj, B., Solaiappan, S. K., Rajendran, P., Lee, I. E., Madasamy, S. K., Gnanasekaran, R. K., Karuppasamy, A., & Raja, V. (2024). Design, control, aerodynamic performances, and structural integrity investigations of compact ducted drone with co-axial propeller for high altitude surveillance. Scientific Reports, 14(1), 6330. https://doi.org/10.1038/s41598-024-54174-x
Jonckers, D., Tauscher, O., Thakur, A. R., & Maywald, L. (2022). Additive manufacturing of large structures using free-flying satellites. Frontiers in Space Technologies, 3, 879542. https://doi.org/10.3389/frspt.2022.879542
Kirchherr, J., Yang, N. H. N., Schulze-Spüntrup, F., Heerink, M. J., & Hartley, K. (2023). Conceptualizing the circular economy (Revisited): An analysis of 221 definitions. Resources, Conservation and Recycling, 194, 107001. https://doi.org/10.1016/j.resconrec.2023.107001
Kiron, M. I. (2021). Kenaf fiber: Properties, cultivation, production, uses and advantages. Textile Learner. https://textilelearner.net/kenaf-fiber-properties/
Lawson, L., Degenstein, L. M., Bates, B., Chute, W., King, D., & Dolez, P. I. (2022). Cellulose textiles from hemp biomass: Opportunities and challenges. Sustainability (Switzerland), 14(22), 15337. https://doi.org/10.3390/su142215337
Maiti, S., Islam, M. R., Uddin, M. A., Afroj, S., Eichhorn, S. J., & Karim, N. (2022). Sustainable fiber-reinforced composites: A review. Advanced Sustainable Systems, 6(11), 2200258. https://doi.org/10.1002/adsu.202200258
Masoodi, R., & Pillai, K. M. (2012). A study on moisture absorption and swelling in bio-based jute-epoxy composites. Journal of Reinforced Plastics and Composites, 31(5), 285-294. https://doi.org/10.1177/0731684411434654
MatWeb. (2023a). Overview of materials for Acrylonitrile Butadiene Styrene (ABS), molded. Matweb.com. https://www.matweb.com/search/DataSheet.aspx?MatGUID=eb7a78f5948d481c9493a67f0d089646
MatWeb. (2023b). Overview of materials for epoxy/carbon fiber composite. Matweb.com. https://www.matweb.com/search/DataSheet.aspx?MatGUID=39e40851fc164b6c9bda29d798bf3726&ckck=1
MatWeb. (2023c). Overview of materials for polyamide-imide, ,olded. Matweb.com. https://www.matweb.com/search/DataSheet.aspx?MatGUID=1ca9588da84640d199959da7c00a6083
MatWeb. (2023d). Overview of materials for polycarbonate, molded. Matweb.com. https://www.matweb.com/search/DataSheet.aspx?MatGUID=84b257896b674f93a39596d00d999d77
MatWeb. (2023e). Overview of materials for polypropylene, molded. Matweb.com. https://www.matweb.com/search/DataSheet.aspx?MatGUID=08fb0f47ef7e454fbf7092517b2264b2
MatWeb. (2023f). Solvay CYCOM® 5216 Epoxy - Woven Aramid Fiber Prepreg. Matweb.com. https://www.matweb.com/search/DataSheet.aspx?MatGUID=d5c0a5688cdd434fb4c5b3768939d1af
Mesquita, R. G. de A., César, A. A. da S., Mendes, R. F., Mendes, L. M., Marconcini, J. M., Glenn, G., & Tonoli, G. H. D. (2017). Polyester composites reinforced with corona-treated fibers from pine, eucalyptus and sugarcane bagasse. Journal of Polymers and the Environment, 25(3), 800-811. https://doi.org/10.1007/s10924-016-0864-6
Mishra, A., Pal, S., & Singh, P. (2022). Design and analysis of an Eight Rotor Co-Axial UAV using carbon fiber composites. Materials Today: Proceedings, 68, 1011-1015. https://doi.org/10.1016/j.matpr.2022.08.206
Mitchell, S., Steinbach, J., Flanagan, T., Ghabezi, P., Harrison, N., O’Reilly, S., Killian, S., & Finnegan, W. (2022). Evaluating the sustainability of lightweight drones for delivery: Towards a suitable methodology for assessment. ECCM 2022 - Proceedings of the 20th European Conference on Composite Materials: Composites Meet Sustainability, 6, 355-362. https://doi.org/10.1186/s42252-023-00040-4
Mohammed, M., Jawad, A. J. M., Mohammed, A. M., Oleiwi, J. K., Adam, T., Osman, A. F., Dahham, O. S., Betar, B. O., Gopinath, S. C. B., & Jaafar, M. (2023). Challenges and advancement in water absorption of natural fiber-reinforced polymer composites. Polymer Testing, 124, 108083. https://doi.org/10.1016/j.polymertesting.2023.108083
Moraga, G., Huysveld, S., De Meester, S., & Dewulf, J. (2021). Development of circularity indicators based on the in-use occupation of materials. Journal of Cleaner Production, 279, 123889. https://doi.org/10.1016/j.jclepro.2020.123889
Naik, V., Kumar, M., & Kaup, V. (2021). Study on the mechanical properties of alkali treated screw pine root fiber reinforced in epoxy matrix composite material. AIP Conference Proceedings, 2317(1), 020023. https://doi.org/10.1063/5.0036136
Parveez, B., Kittur, M. I., Badruddin, I. A., Kamangar, S., Hussien, M., & Umarfarooq, M. A. (2022). Scientific advancements in composite materials for aircraft applications: A review. Polymers, 14(22), 5007. https://doi.org/10.3390/polym14225007
Patil, S. A., Shinge, P. R., Kale, A. N., Antad, S. R., & Hatgine, R. A. (2023). Photography and videography drone. International Research Journal of Modernization in Engineering Technology and Science, 5(5), 2416-2419. https://doi.org/10.56726/IRJMETS34742
Pelin, C. E., Sonmez, M., Pelin, G., Stefan, A., Stelescu, M. D., Ignat, M., Gurau, D., Georgescu, M., & Nituica, M. (2024). Composites based on polymeric blends reinforced with TiO2 modified aramid fibers. Polymer Composites, 45(8), 7116-7136. https://doi.org/10.1002/pc.28254
Perdana, M., Prastiawan, P., & Hadi, S. (2017). Mechanical properties of composite waste material based styrofoam, baggase and eggshell powder for application of drone frames. IOP Conference Series: Earth and Environmental Science, 97(1), 1-7. https://doi.org/10.1088/1755-1315/97/1/012034
Perikleous, D., Koustas, G., Velanas, S., Margariti, K., Velanas, P., & Gonzalez-Aguilera, D. (2024). A novel drone design based on a reconfigurable unmanned aerial vehicle for wildfire management. Drones, 8(5), 203. https://doi.org/10.3390/drones8050203
Prasad, L., Kumar, S., Patel, R. V., Yadav, A., Kumar, V., & Winczek, J. (2020). Physical and mechanical behaviour of sugarcane bagasse fibre-reinforced epoxy bio-composites. Materials, 13(23), 1-13. https://doi.org/10.3390/ma13235387
Rahman, M. Z. M. A., & Ariffin, A. H. (2022). Mechanical properties of hybrid kenaf - Pineapple Leaf Fibre (PALF) epoxy composite for engineering application. Progress in Aerospace and Aviation Technology, 2(1), 26-32. https://doi.org/10.30880/paat.2022.02.01.004
Raj, R. J., Panneer Selvam, P., & Pughalendi, M. (2021). A review of aluminum alloys in aircraft and aerospace industry aerodynamic. Journal of Huazhong University of Science and Technology, 50(4), 1-10. https://www.researchgate.net/publication/352281767
Rajak, D. K., Wagh, P. H., & Linul, E. (2022). A review on synthetic fibers for polymer matrix composites: Performance, failure modes and applications. Materials, 15(14), 4790. https://doi.org/10.3390/ma15144790
Rajak D. K, Pagar D. D., Menezes P. L., & Linul, E. (2019). Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers, 10, 16-67.
Rangel-Buitrago, N., & Neal, W. J. (2023). A geological perspective of plastic pollution. Science of the Total Environment, 893, 164867. https://doi.org/10.1016/j.scitotenv.2023.164867
Raut, R., Jadhav, S., & Jadhav, N. B. (2024). Design of hexacopter and finite element analysis for material selection. International Journal of Intelligent Unmanned Systems, 12(2), 192-219. https://doi.org/10.1108/IJIUS-03-2023-0033
Rejeb, A., Rejeb, K., Simske, S. J., & Treiblmaier, H. (2023). Drones for supply chain management and logistics: a review and research agenda. International Journal of Logistics Research and Applications, 26(6), 708-731. https://doi.org/10.1080/13675567.2021.1981273
Reports and Data. (2020). Aerospace and defence - Unmanned composites market. https://www.reportsanddata.com/report-detail/unmanned-composites-market#:~:text=Market Summary,at a CAGR of 16.8 %25.
Rozi, N. M., Abdul Hamid, Hamidah Hossain, M. S., Khalil, N. A., Ahmad Yahaya, A. N., Fizal, A. N. S., Haris, M. Y., Ahmad, N., & Zulkifli, M. (2021). Enhanced mechanical and thermal properties of modified oil palm fiber-reinforced polypropylene composite via multi-objective optimization of in situ silica sol-gel synthesis. Polymers, 13(19), 3338. https://doi.org/10.3390/polym13193338
Sahari, J., & Maleque, M. A. (2016). Mechanical properties of oil palm shell composites. International Journal of Polymer Science, 2016(1), 7457506. https://doi.org/10.1155/2016/7457506
Sahoo, P., Saini, L., & Dixit, A. (2023). Microwave-absorbing materials for stealth application: A holistic overview. Oxford Open Materials Science, 3(1), itac012. https://doi.org/10.1093/oxfmat/itac012
Sahu, P., & Gupta, M. K. (2020). Lowering in water absorption capacity and mechanical degradation of sisal/epoxy composite by sodium bicarbonate treatment and PLA coating. Polymer Composites, 41(2), 668-681. https://doi.org/10.1002/pc.25397
Shinoj, S., Visvanathan, R., Panigrahi, S., & Kochubabu, M. (2011). Oil palm fiber (OPF) and its composites: A review. Industrial Crops and Products, 33(1), 7-22. https://doi.org/10.1016/j.indcrop.2010.09.009
Shortland, R. (2023). Speed, strength, and safety: The importance of plastics in formula one. British Plastic Federation. https://www.bpf.co.uk/article/plastics-in-formula-one-3292.aspx
Siddique, S. H., Faisal, D. S., Zahid, B., & Wang, C. (2021). Tensile properties of bagasse fiber composites. Mehran University Research Journal of Engineering and Technology, 40(3), 502-511. https://doi.org/10.22581/muet1982.2103.05
Siengchin, S. (2023). A review on lightweight materials for defence applications: Present and future developments. Defence Technology, 24, 1-17. https://doi.org/10.1016/j.dt.2023.02.025
Siregar, J. P., Cionita, T., Bachtiar, D., & Rejab, M. R. M. (2014). Tensile properties of pineapple leaf fibre reinforced unsaturated polyester composites. Applied Mechanics and Materials, 695, 159-162. https://doi.org/10.4028/www.scientific.net/amm.695.159
Sliusar, N., Filkin, T., Huber-Humer, M., & Ritzkowski, M. (2022). Drone technology in municipal solid waste management and landfilling: A comprehensive review. Waste Management, 139, 1-16. https://doi.org/10.1016/j.wasman.2021.12.006
Sujon, M. A. S., Habib, M. A., & Abedin, M. Z. (2020). Experimental investigation of the mechanical and water absorption properties on fiber stacking sequence and orientation of jute/carbon epoxy hybrid composites. Journal of Materials Research and Technology, 9(5), 10970-10981. https://doi.org/10.1016/j.jmrt.2020.07.079
Tahir, H. R., Malengier, B., Van Daele, D., & Van Langenhove, L. (2022). Validation of a textile material’s electrostatic characterization device for different parameters and their effect on the electrostatic charge generation. Materials, 15(16), 5716. https://doi.org/10.3390/ma15165716
Thyavihalli Girijappa, Y. G., Mavinkere Rangappa, S., Parameswaranpillai, J., & Siengchin, S. (2019). Natural fibers as sustainable and renewable resource for development of eco-friendly composites: A comprehensive review. Frontiers in Materials, 6, 226. https://doi.org/10.3389/fmats.2019.00226
Tretkoff, E. (2006). November 1783: Intrepid physicist is first to fly. American Physical Society, 15(10). https://www.aps.org/publications/apsnews/200611/history.cfm
Vigneswaran, C., Ananthasubramanian, M., & Kandhavadivu, P. (2014). Bioprocessing of synthetic fibres. Bioprocessing of Textiles, 189-250. https://doi.org/10.1016/b978-93-80308-42-5.50004-4
Yahaya, R., Sapuan, S. M., Jawaid, M., Leman, Z., & Zainudin, E. S. (2016). Water absorption behaviour and impact strength of Kenaf-Kevlar reinforced epoxy hybrid composites. Advanced Composites Letters, 25(4), 98-102. https://doi.org/10.1177/096369351602500403
Yew, B. S., Muhamad, M., Mohamed, S. B., & Wee, F. H. (2019). Effect of alkaline treatment on structural characterisation, thermal degradation and water absorption ability of coir fibre polymer composites. Sains Malaysiana, 48(3), 653-659. https://doi.org/10.17576/jsm-2019-4803-19
Zainol, I. S., Aidil, K., Rahman, A. A., & Ramli, S. H. (2016). Conceptual framwork of screw pine leaves biocomposite for furniture component. 2nd International Conference On Creative Media, Design & Technology (REKA2016). http://eprints.usm.my/39327/1/PAPER_49.pdf
Zhang, J., Lin, G., Vaidya, U., & Wang, H. (2023). Past, present and future prospective of global carbon fibre composite developments and applications. Composites Part B: Engineering, 250, 110463. https://doi.org/10.1016/j.compositesb.2022.110463
Zhou, S., Chen, X., Huang, R., Lin, Y., & Ye, X. (2022). Interfacial treatment-induced high-strength plant fiber/phenolic resin composite. Frontiers in Materials, 9, 10722249. https://doi.org/10.3389/fmats.2022.1072249
ISSN 0128-7680
e-ISSN 2231-8526