e-ISSN 2231-8526
ISSN 0128-7680
Nik Ainun Nik Ismail, Juliana Abdul Halip, Mohd Nazrul Roslan, Al Emran Ismail, Norhazaedawati Baharuddin, Khairu Kamarudin and Muhammad Farid Shaari
Pertanika Journal of Science & Technology, Volume 32, Issue S5, December 2024
DOI: https://doi.org/10.47836/pjst.32.S5.01
Keywords: Aluminium mesh sheet, bamboo fibre, hybrid composite, mechanical properties, natural fibre composite
Published on: 30 October 2024
Bamboo fibres are one of the sustainable lignocellulosic resources explored for polymer composites in recent years. Research has shown that bamboo fibres have the potential to be used in a variety of critical applications. Nevertheless, bamboo fibres are susceptible to thermal and hygroscopic loads, and their mechanical properties are limited by the unequal interfacial strength and varying fibre dimensions. Implementing hybrid procedures or incorporating alternative materials, such as aluminium metal, is strongly advised to address this issue. Thus, this study investigates the tensile and flexural performances of the hybrid bamboo fibre/aluminium expanded mesh-reinforced polymer composites. The composites were fabricated using epoxy resin reinforced with bamboo fibre, and an aluminium expanded mesh sheet was constructed using a vacuum infusion process utilising various stacking sequences and mesh sizes. The test findings indicated that the composite material exhibited tensile stress values ranging from 27 to 34 MPa and a corresponding tensile strain value between 1.1% and 1.6%. The flexural strength and strain values were measured within the range of 44 Mpa to 59 Mpa and 2.2% to 3.2%, respectively. ANOVA analysis showed that both stacking sequences and mesh size significantly affected the tensile performances of the composites, while only stacking sequences affected the flexural performance significantly. Overall, a hybrid composite of bamboo fibre and aluminium mesh is well-suited as a substitute material in industries requiring exceptional mechanical properties.
Adeniyi, A. G., Onifade, D. V., Ighalo, J. O., & Adeoye, A. S. (2019). A review of coir fiber reinforced polymer composites. Composites Part B: Engineering, 176(June), 107305. https://doi.org/10.1016/j.compositesb.2019.107305
Alemayehu, Z., Nallamothu, R. B., Liben, M., Nallamothu, S. K., & Nallamothu, A. K. (2020). Experimental investigation on characteristics of sisal fiber as composite material for light vehicle body applications. Materials Today: Proceedings, 38(Part 5), 2439-2444. https://doi.org/10.1016/j.matpr.2020.07.386
Arun Prakash, V. R., & Julyes Jaisingh, S. (2018). Mechanical strength behaviour of silane treated E-glass fibre, Al-6061 and SS-304 wire mesh reinforced epoxy resin Hybrid composites. Silicon, 10(2018), 2279-2286. https://doi.org/10.1007/s12633-018-9762-y
Atiqah, A., Ansari, M. N., Kamal, M. S. S., Jalar, A., Afeefah, N. N., & Ismail, N. (2020). Effect of alumina trihydrate as additive on the mechanical properties of kenaf/polyester composite for plastic encapsulated electronic packaging application. Journal of Materials Research and Technology, 9(6), 12899-12906. https://doi.org/10.1016/j.jmrt.2020.08.116
Bahja, B., Elouafi, A., Tizliouine, A., & Omari, L. H. (2020). Morphological and structural analysis of treated sisal fibers and their impact on mechanical properties in cementitious composites. Journal of Building Engineering, 34(September 2020), 102025. https://doi.org/10.1016/j.jobe.2020.102025
Balla, V. K., Kate, K. H., Satyavolu, J., Singh, P., & Tadimeti, J. G. D. (2019). Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects. Composites Part B: Engineering, 174(March), 106956. https://doi.org/10.1016/j.compositesb.2019.106956
Batista, M. D. R., & Drzal, L. T. (2020). Surface modification of bamboo fiber with sodium hydroxide and graphene oxide in epoxy composites. Polymer Composites, 4(93), 1135-1147. https://doi.org/10.1002/pc.25888
Batu, T., & Lemu, H. G. (2020). Investigation of mechanical properties of false banana/glass fiber reinforced hybrid composite materials. Results in Materials, 8, 100152. https://doi.org/10.1016/j.rinma.2020.100152
Cavalcanti, D. K. K., Banea, M. D., Neto, J. S. S., Lima, R. A. A., da Silva, L. F. M., & Carbas, R. J. C. (2019). Mechanical characterisation of intralaminar natural fibre-reinforced hybrid composites. Composites Part B: Engineering, 175, 107149. https://doi.org/10.1016/j.compositesb.2019.107149
Chin, S. C., Tee, K. F., Tong, F. S., Ong, H. R., & Gimbun, J. (2020). Thermal and mechanical properties of bamboo fiber reinforced composites. Materials Today Communications, 23, 100876. https://doi.org/10.1016/j.mtcomm.2019.100876
Chokka, S. K., Satish Ben, B., Sai Srinadh, K. V., (2020). Vacuum infusion processed adhesive bonding of SS plates. Materials Today: Proceedings, 46, 4812-4816. https://doi.org/10.1016/j.matpr.2020.10.318
Choudary, M. V., Nagaraja, A., Sai, K. O. C., & Balasubramanian, M. (2020). Characterisation of laminate sandwiched with stainless steel and glass fibre. Materials Today: Proceedings, 22, 847-852. https://doi.org/10.1016/j.matpr.2019.11.030
Dhiman, P., & Sharma, H. (2020). Effect of walnut shell filler on mechanical properties of jute-basalt hybrid epoxy composites. Materials Today: Proceedings, 44(Part 6), 4537-4541. https://doi.org/10.1016/j.matpr.2020.10.811
Getu, D., Nallamothu, R. B., Masresha, M., Nallamothu, S. K., & Nallamothu, A. K. (2020). Production and characterisation of bamboo and sisal fiber reinforced hybrid composite for interior automotive body application. Materials Today: Proceedings, 38(Part 5), 2853-2860. https://doi.org/10.1016/j.matpr.2020.08.780
Girimurugan, R., Pugazhenthi, R., Maheskumar, P., Suresh, T., & Vairavel, M. (2020). Impact and hardness behaviour of epoxy resin matrix composites reinforced with banana fiber/camellia sinensis particles. Materials Today: Proceedings, 39(Part 1), 373-377. https://doi.org/10.1016/j.matpr.2020.07.597
Gonzalez-Canche, N. G., Flores-Johnson, E. A., & Carrillo, J. G. (2017). Mechanical characterisation of fiber metal laminate based on aramid fiber reinforced polypropylene. Composite Structures, 172, 259-266. https://doi.org/10.1016/j.compstruct.2017.02.100
Harikumar, R., & Devaraju, A. (2020). Evaluation of mechanical properties of bamboo fiber composite with addition of Al2O3 nano particles. Materials Today: Proceedings, 39(Part 1), 606-609. https://doi.org/10.1016/j.matpr.2020.08.613
Hasselbruch, H., Von Hehl, A., & Zoch, H. W. (2015). Properties and failure behavior of hybrid wire mesh/carbon fiber reinforced thermoplastic composites under quasi-static tensile load. Materials and Design, 66(PB), 429-436. https://doi.org/10.1016/j.matdes.2014.07.032
He, W., Wang, L., Liu, H., Wang, C., Yao, L., Li, Q., & Sun, G. (2021). On impact behavior of fiber metal laminate (FML) structures: A state-of-the-art review. Thin-Walled Structures, 167(April), 108026. https:/doi.org/10.1016/j.tws.2021.108026
Hu, C., Sang, L., Jiang, K., Xing, J., & Hou, W. (2022). Experimental and numerical characterisation of flexural properties and failure behavior of CFRP/Al laminates. Composite Structures, 281, 115036. https://doi.org/10.1016/j.compstruct.2021.115036
Joest, A.-C. (2017, June). Malaysian bamboo development: Challenges and opportunities. International Bamboo and Rattan Organization (INBAR).
Kali, N., Pathak, S., & Korla, S. (2019). Effect on vibration characteristics of fiber metal laminates sandwiched with natural fibers. Materials Today: Proceedings, 28, 1092-1096. https://doi.org/10.1016/j.matpr.2020.01.088
Kavitha, K., Vijayan, R., & Sathishkumar, T. (2020). Fibre-metal laminates: A review of reinforcement and formability characteristics. Materials Today: Proceedings, 22, 601-605. https://doi.org/10.1016/j.matpr.2019.08.232
Li, M., Pu, Y., Thomas, V. M., Yoo, C. G., Ozcan, S., Deng, Y., Nelson, K., & Ragauskas, A. J. (2020). Recent advancements of plant-based natural fiber–reinforced composites and their applications. Composites Part B: Engineering, 200(1), 108254. https://doi.org/10.1016/j.compositesb.2020.108254
Lopes, M. D. M., Padua, M. de S., Gazem de Carvalho, J. P. R., Simonassi, N. T., Lopez, F. P. D., Colorado, H. A., & Vieira, C. M. F. (2021). Natural based polyurethane matrix composites reinforced with bamboo fiber waste for use as oriented strand board. Journal of Materials Research and Technology, 12, 2317-2324. https://doi.org/10.1016/j.jmrt.2021.04.023
Manalo, A. C., Wani, E., Zukarnain, N. A., Karunasena, W., & Lau, K. T. (2015). Effects of alkali treatment and elevated temperature on the mechanical properties of bamboo fibre-polyester composites. Composites Part B: Engineering, 80, 73-83. https://doi.org/10.1016/j.compositesb.2015.05.033
Megahed, A. A., Abd El-Wadoud, F., Wagih, A., & Kabeel, A. M. (2021). Effect of incorporating aluminum wire mesh on the notched and un-notched strengths of glass fiber/epoxy composites. Composite Structures, 263(February), 113695. https://doi.org/10.1016/j.compstruct.2021.113695
Megeri, S., & Naik, G. N. (2021). Numerical studies of the low velocity impact behaviour on hybrid fiber metal laminates. Materials Today: Proceedings, 44, 1860-1864. https://doi.org/10.1016/j.matpr.2020.12.030
Nascimento, H. M., Granzotto, D. C. T., Radovanovic, E., & Fávaro, S. L. (2021). Obtention and characterisation of polypropylene composites reinforced with new natural fibers from Yucca aloifolia L. Composites Part B: Engineering, 227, 109414. https://doi.org/10.1016/j.compositesb.2021.109414
Noori, A., Lu, Y., Saffari, P., Liu, J., & Ke, J. (2021). The effect of mercerisation on thermal and mechanical properties of bamboo fibers as a biocomposite material: A review. Construction and Building Materials, 279, 122519. https://doi.org/10.1016/j.conbuildmat.2021.122519
Okubo, K., Fujii, T., & Yamamoto, Y. (2004). Development of bamboo-based polymer composites and their mechanical properties. Composites Part A: Applied Science and Manufacturing, 35(3), 377-383. https://doi.org/10.1016/j.compositesa.2003.09.017
Otto, G. P., Moisés, M. P., Carvalho, G., Rinaldi, A. W., Garcia, J. C., Radovanovic, E., & Fávaro, S. L. (2017). Mechanical properties of a polyurethane hybrid composite with natural lignocellulosic fibers. Composites Part B: Engineering, 110, 459-465. https://doi.org/10.1016/j.compositesb.2016.11.035
Oushabi, A. (2019). The pull-out behavior of chemically treated lignocellulosic fibers/polymeric matrix interface (LF/PM): A review. Composites Part B: Engineering, 174(June). https://doi.org/10.1016/j.compositesb.2019.107059
Patnaik, P. K., Swain, P. T. R., Mishra, S. K., Purohit, A., & Biswas, S. (2019). Recent developments on characterisation of needle-punched nonwoven fabric reinforced polymer composites - A review. Materials Today: Proceedings, 26, 466-470. https://doi.org/10.1016/j.matpr.2019.12.086
Prakash, V. R. A., & Jaisingh, S. J. (2018). Mechanical strength behaviour of silane treated E-glass Fibre/Al 6061 & SS-304 wire mesh reinforced epoxy resin hybrid composite. Silicon, 10(5), 2279-2286. https://doi.org/10.1007/s12633-018-9762-y
Rassiah, K., & Megat Ahmad, M. M. H. (2013). A review on mechanical properties of bamboo fiber reinforced polymer composite. Australian Journal of Basic and Applied Sciences, 7(8), 247-253.
Reddy, S. R. T., Prasad, A. V. R., & Ramanaiah, K. (2020). Tensile and flexural properties of biodegradable jute fiber reinforced poly lactic acid composites. Materials Today: Proceedings, 44(Part 1), 917-921. https://doi.org/10.1016/j.matpr.2020.10.806
Rozyanty, A., Zhafer, S., Shayfull, Z., Nainggolan, I., Musa, L., & Zheing, L. (2020). Effect of water and mechanical retting process on mechanical and physical properties of kenaf bast fiber reinforced unsaturated polyester composites. Composite Structures, 257, 113384. https://doi.org/10.1016/j.compstruct.2020.113384
Sadoun, A. M., El-Wadoud, F. A., Fathy, A., Kabeel, A. M., & Megahed, A. A. (2021). Effect of through-the-thickness position of aluminum wire mesh on the mechanical properties of GFRP/Al hybrid composites. Journal of Materials Research and Technology, 15, 500-510. https://doi.org/10.1016/j.jmrt.2021.08.026
Sánchez, M. L., Patiño, W., & Cárdenas, J. (2020). Physical-mechanical properties of bamboo fibers-reinforced biocomposites: Influence of surface treatment of fibers. Journal of Building Engineering, 28, 101058. https://doi.org/10.1016/j.jobe.2019.101058
Sen, T., & Reddy, H. N. J. (2011). Application of sisal , bamboo , coir and jute natural composites in structural upgradation. International Journal of Innovation, Maagement and Technology, 2(3), 186-191.
Sheng, Y., Tu, D., Liao, F., Yang, Y., He, C., Zhang, W., & Meng, C. (2023). Flexural behavior and design methodology for bamboo scrimber-aluminum plate composite beams. Engineering Structures, 292, 116570. https://doi.org/10.1016/j.engstruct.2023.116570
Shireesha, Y., & Nandipati, G. (2019). State of art review on natural fibers. Materials Today: Proceedings, 18, 15-24. https://doi.org/10.1016/j.matpr.2019.06.272
Siam, N. A., Uyup, M. K. A., Husain, H., Mohmod, A. L., & Awalludin, M. F. (2019). Anatomical, physical, and mechanical properties of thirteen Malaysian bamboo species. BioResources, 14(2), 3925-3943. https://doi.org/10.15376/biores.14.2.3925-3943
Singh, C. Q. J., & Rajamurugan, G. (2021). Effect of resin on mechanical and wear performance of wire mesh-reinforced hydrophilic fiber composite. Transactions of the Indian Institute of Metals, 74(11), 2853-2867. https://doi.org/10.1007/s12666-021-02359-7
Tanawade, A. G., & Modhera, C. D. (2017). Tensile behaviour of welded wire mesh and hexagonal metal mesh for ferrocement application. IOP Conference Series: Materials Science and Engineering, 225, 012069. https://doi.org/10.1088/1757-899x/225/1/012069
Todkar, S. S., & Patil, S. A. (2019). Review on mechanical properties evaluation of pineapple leaf fibre (PALF) reinforced polymer composites. Composites Part B: Engineering, 174(May), 106927. https://doi.org/10.1016/j.compositesb.2019.106927
Truong, G. T., Tran, H. Van, & Choi, K. K. (2019). Tensile behavior of on- and off-axis carbon fiber reinforced polymer composites incorporating steel wire mesh. Mechanics of Materials, 137(July), 103131. https://doi.org/10.1016/j.mechmat.2019.103131
Umanath, K., Prabhu, M. K., Yuvaraj, A., & Devika, D. (2019). Fabrication and analysis of Master leaf spring plate using carbon fibre and pineapple leaf fibre as natural composite materials. Materials Today: Proceedings, 33, 183-188. https://doi.org/10.1016/j.matpr.2020.03.790
Vigneshwaran, S., Sundarakannan, R., John, K. M., Joel Johnson, R. D., Prasath, K. A., Ajith, S., Arumugaprabu, V., & Uthayakumar, M. (2020). Recent advancement in the natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production, 277, 124109. https://doi.org/10.1016/j.jclepro.2020.124109
Wang, Y. Y., Guo, F. L., Li, Y. Q., Zhu, W. Bin, Li, Y., Huang, P., Hu, N., & Fu, S. Y. (2022). High overall performance transparent bamboo composite via a lignin-modification strategy. Composites Part B: Engineering, 235(March), 109798. https://doi.org/10.1016/j.compositesb.2022.109798
Xie, X., Zhou, Z., & Yan, Y. (2019). Flexural properties and impact behaviour analysis of bamboo cellulosic fibers filled cement based composites. Construction and Building Materials, 220, 403-414. https://doi.org/10.1016/j.conbuildmat.2019.06.029
Yadav, V., & Singh, S. (2021). A comprehensive review of natural fiber composites: Applications, processing techniques and properties Vikas. Materials Today: Proceedings, 56, 2537-2542. https://doi.org/10.1016/j.matpr.2021.09.009
Yuan, T., Wang, X., Liu, X., Lou, Z., Mao, S., & Li, Y. (2022). Bamboo flattening technology ebables efficient and value-added utilisation of bamboo in the manufacture of furniture and engineered composites. Composites Part B: Engineering, 242(June), 110097. https://doi.org/10.1016/j.compositesb.2022.110097
ISSN 0128-7680
e-ISSN 2231-8526