e-ISSN 2231-8526
ISSN 0128-7680
Charles Adesola Ajagbe, Mohamad Faiz Zainuddin, Latifah Abd Manaf, Nik Nor Rahimah Nik Ab Rahim and Gloria Titi Anguruwa
Pertanika Journal of Science & Technology, Volume 33, Issue 1, January 2025
DOI: https://doi.org/10.47836/pjst.33.1.25
Keywords: Briquette, carbonization, characterization, compressive test, fuel efficiency
Published on: 23 January 2025
The increasing use of biomass residues in briquette forms is not just for disposal problems but provides alternatives to fossil fuel and fuelwood. This research concentrated on assessing the effectiveness of the briquettes when used for cooking. The briquettes were prepared from carbonized materials: 100% Cassava peels (CP), 100% Sawdust (SD) of Gmelina arborea and their hybrid (MIX1 -75:25, MIX2 -50:50, and MIX3 -25:75) with starch binder in percentage (5% and 10%) by weight at varying resident time of 10, 20, and 30 minutes. ANOVA was utilized to evaluate the significance at p<0.05. The produced briquettes were oven-dried and subjected to mechanical, boiling test, and fuel performance tests to evaluate their suitability as domestic fuel. The result shows that shatter index ranged between 46.81%–95.54%, compressive strength ranged from 0.12–0.26 N/mm2. Briquette’s thermal efficiency with good flame was within the range of 24.27%–55.55%. However, the average burning rate of all the briquette types was between 0.39 to 0.85 kg/hr, while the average specific fuel consumption ranged from 0.08 to 0.14 kg/l. The briquette took 15 minutes to boil water from 96.9°C to 97. 9°C.The comprehensive briquette test reveals that cassava peel exhibits the highest capacity for handling, while hybrid briquettes MIX1 and MIX3 demonstrate commendable fuel performance. It was noted that the binder ratio, type of biomass material, and residence time significantly impact the properties of the briquettes.
Achebe C., Umeji A., & Chukwuneke J. (2018). Energy evaluation of various compositions of biomass waste briquettes. Advances in Research, 13(6), 1-11. https://doi.org/10.9734/AIR/2018/39270
Adu-Poku, K. A., Appiah, D., Asosega, K. A., Derkyi, N. S. A., Uba, F., Kumi, E. N., & Akowuah, E. (2022). Characterization of fuel and mechanical properties of charred agricultural wastes. Energy Report, 8, 4319-4331. https://doi.org/10.1016/j.egyr.2022.03.015
Ajiboye, T. K., Abdulkareem, S., & Anibijuwon, A. O. (2016). Investigation of mechanical properties of briquette product of sawdust-charcoal as a potential domestic energy source. Journal of Applied Science and Environmental Management, 20(4), 1179-1188. https://doi.org/10.4314/jasem. v2014.34
Ajimotokan, H., Ibitoye, S., Odusote, J., Adesoye, O., & Omoniyi, P. (2019). Physico-mechanical properties of composite briquettes from corncob and rice husk. Journal of Bioresources and Bioproduct, 4(3),159-165. https://doi.org/10.12162/jbb. v4i3.004
Akande, O. M., & Olorunnisola, A. O. (2018). Potential of briquetting as a waste management option for handling market-generated vegetable waste in Port Harcourt, Nigeria. Recycle, 3(2), 1–14. https:// doi.org/10.3390/recycling3020011
Akogun, O. A., Waheed, M. A., Ismaila, S. O., & Dairo, O. U. (2022). Physical and combustion indices of thermally treated cornhusk and sawdust briquettes for heating applications in Nigeria. Journal of Natural Fibers, 19(4), 1201-1216. https://doi.org/10.1080/15440478.2020.1764445
Akogun, O. A., Waheed, M. A., Ismaila, S. O., & Dairo, O. U. (2020). Co-briquetting characteristics of cassava peel with sawdust at different torrefaction pretreatment conditions. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46(1), 5768-5786 https://doi.org/10.1080/15567036.2020. 1752333
Aliyu, A. B., Ibrahim, M. A., Ibrahim, H., Dambatta, M. B., & Oyewale, A. O. (2017). GC-MS analysis of Pavetta corymbosa lipophilic extract and its antimicrobial activity. Ife Journal of Science, 19(2), 363-368. https://doi.org/10.43141/ijs. v1912.16
Aliyu, M., Mohammed, I. S., Lawal, H. A., Dauda, S. M., Balami, A. A., Usman, M., Abdullahi, L., Abubakar, M., & Ndagi, B. (2021). Effect of compaction pressure and biomass type (rice husk and sawdust) on some physical and combustion properties of briquettes. Arid Zone Journal of Engineering, Technology & Environment, 17(1), 61-70.
Arachchige, U. S.P. R. (2021). Briquettes production as an alternative fuel. Nature Environment and Pollution Technology, 20(4), 1661-1668. https://doi.org/10.46488/NEPT2021.v20i04.029
Aransiola, E. F, Oyewusi, T. F, Osunbitan, J. A., & Ogunjimi, L. A. O (2019). Effect of binder type, binder concentration and compacting pressure on some physical properties of carbonized corncob briquette. Energy Report, 5, 909–918.
ASTM D-2166-85. (2008). Standard Test Method of Compressive Strength of Wood. ASTM International. https://www.scirp.org/reference/referencespapers?referenceid=1131625
ASTM D-440-86. (2002). Standard Test Method of Drop Shatter Test for Coal. ASTM International. https://cdn.standards.iteh.ai/samples/17330/af74b37333dd4d69bf5587079e95bcfd/ASTM-D440-86-2002-.pdf
Bamisaye, A., & Rapheal, I. A. (2021). Effect of binder type on the NaOH-treated briquettes produced from banana leaves. Biomass Conversion and Biorefinery, 13, 8939-8947 https://doi.org/10.1007/s13399-021-01771-9
Barnes, B. R. (2014). Behavioral change, indoor air pollution and child respiratory health in developing countries: A review. International Journal of Environmental Research and Public Health, 11(5), 4607–4618. https://doi.org/10.3390/ijerph/10504607
Bello, R., Olorunnisola, A., Omoniyi, T., & Onilude, M. (2022). Performance of briquettes produced from sawdust of Gmelina arborea and montmorillonite clay as binder. Bioenergy Studies, 3(1),1-13 http://doi.org//10.51606/bes.2023.14
Bello, R. S., & Onilude, M. A. (2020). Physico-mechanical characteristics of high-density briquettes produced from composite sawdust. Journal of Applied Sciences and Environmental Management, 24(5), 779-787. https://doi.org/10.4314/jasem.v24i5.8
Blesa, M. J., Miranda, J. L., Izquierdo, M. T., & Moliner, R. (2003). Curing time effects on mechanical strength of smokeless fuel briquettes. Fuel Processing Technology, 80, 155-167. https://doi.org//10.1016/S0378-3820(02)00243-6
Blesa, M., Miranda, J., Izquierdo, M., & Moliner, R. (2003). Curing temperature affects the mechanical strength of smokeless fuel briquettes prepared with molasses. Fuel, 82(8), 943-947. https://doi.org/10.1016/s0016-2361(02)00416-7
Bolaji, B.O. (2011). Effects of unsustainable use of biomass energy for cooking and strategies for their reduction in developing countries. Developing Countries Studies, 2(3), 19–25.
Borowski, G., & Hycnar, J. J. (2013). Utilization of fine coal waste as a fuel briquettes. International Journal of Coal Preparation and Utilization, 33(4), 194–204. Https://doi.org/10.1080/19392699.2013.787993
Bot, B. V., Axaopoulos, P. J. Sakellariou, E. I., Sosso, O. T., &Tamba, J. G. (2022a). Energetic and economic analysis of biomass briquettes production from agricultural residues. Applied Energy, 321, Article 119430.
Bot, B. V. Axaopoulous, P. J., Sosso, O. T., Sakellariou, E. I., & Tamba, J. G. (2022b). Economic analysis of biomass briquettes made from coconut shalls, rattan waste, banana peels and sugarcane bagasse in households cooking. International Journal of Energy and Environmental Engineering, 14(2), 179-187.
Bot, B. V., Sosso, O. T., Tamba, J. G., Lekane, E., Bikai, J., & Ndame, M. K. (2021). Preparation and characterization of biomass briquettes made from banana peels, sugarcane bagasse, coconut shells and rattan waste. Biomass Convers Biorefinery, 1-10. https://doi.org/10.1007/s13399-021-01762-w
Chaisuwan, N., Kansai, N., Supakata, N., & Papong, S., (2020). the comparison of environmental impacts of carbonized briquettes from rain tree residues and coffee grounds|tea waste and traditional waste management. International Journal of Environmental Science and Development, 11(1), Article 1224. https://doi.org/1018178/ijesd.2020.11.1.1224
Chungcharoen, T., & Srisang, N. (2020). Preparation and characterization of fuel briquettes made from dual agricultural waste: Cashew nut shells and areca nuts. Journal of Cleaner Production, 256, Article 120434.
Davies, R. M., & Abolude, D. S. (2013). Mechanical handling characteristics of briquettes produced from water hyacinth and plantain peel as binder. Journal of Scientific Research and Reports, 2(1), 93-103.
Davies, R. M., & Davies, O. A. (2013). Physical and combustion characteristics of briquettes made from water hyacinth and phytoplankton scum as binder. Journal of Combustion, 2013, 1–7. https://doi.org/10.1155/2013/549894
Eugenio, C., & Niccolo, P. (2017). Effects of compressing pressure on briquettes made from woody biomass. Chemical Engineering Transactions, 58, 517-522. https://doi.org/10.3303/CET1758087
Ezenwa, O. N., Mgbemena, C. O., & Emagbetere, E. (2024). Utilization of solid residue from hydrothermal liquefaction of breadfruit pulp for the production of bio-briquette using cassava starch as binder. Heliyon, 10(1), Article e24081. https://doi.org/10.1016/j.heliyon.2024.e24081
Ezenwa, O. N., Obika, E. N., Umembamalu, C., & Nwoye, F. C. (2019). Development of ceiling board using breadfruit seed coat and recycled low-density polyethylene. Heliyon, 5(11), Article e02712.
Ferguson, H. (2012). Briquette Businesses in Uganda: Potential for Briquette Enterprises to Address the Sustainability of the Ugandan Biomass Fuel Market. GVEP International London.
Food and Agricultural Organization. (2020). Forestry Production and Trade. Food and Agricultural Organization of the United Nations. http://www.fao.org//faosta/en/data/fo
Gendek, A., Aniszewska, M., Malaťák, J., & Velebil, J. (2018). Evaluation of selected physical and mechanical properties of briquettes produced from cones of three coniferous tree species. Biomasand Bioenergy, 117, 173-179. https://doi.org/10.1016/j.bimbioe.2018.07.025
Guo, Z., Wu, J., Zhang, Y., Wang, F., Guo, Y., Chen, K., & Liu, H., (2020). Characteristics of biomass charcoal briquettes and pollutant emission reduction for sulfur and nitrogen during combustion. Fuel, 272, Article 117632. https/doi.org/10.1016/j.fuel.2020.117632
Ibeto, C. N., Enoch, P., & Alum, O. L. (2017). Impact of torrefaction on fuel emissions and properties of lignite and their blends with biowastes. Journal of Chemical Society of Nigeria, 42(2), 15–21.
Iftikhar, M., Asghar, A., Ramzan, N., Sajjadi, B., & Chen, W. (2019). Biomass densification: Effect of cow dung on the physicochemical properties of wheat straw and rice husk-based biomass pellets. Biomass and Bioenergy, 122, 1–16. https//doi.org/10/1016/j.biombioe.2019.01.005
International Energy Agency. (2019). Renewables Information: Overview. https://www.iea.org/reports/renewables-information-overview/transformation
Jean de Dieu, K. H., & Kim, H. T. (2016). Peat briquette as an alternative to cooking fuel: A techno-economic viability assessment in Rwanda. Energy, 102, 453-464. https://doi.org/10.1016/j.energy. 2016.02.073
Kers, J., Kulu, P., Aruniit, A., Laurmaa, V., Križan, P., Šooš, L., & Kask, Ü. (2010). Determining physical, mechanical, and burning characteristics of polymeric waste material briquettes. Estonian Journal of Engineering, 16(4), 307–316. https://doi.org/10.3176/eng.2010.4.06
Kpalo, S. Y., Zainnuddin, M. F., Manaf, L. A., & Rosland, A. M. (2020). Evaluation of hybrid briquettes from corncob and oil palm trunk bark in a domestic cooking application for rural communities in Nigeria. Journal of Cleaner Production, 284, Article 124745. hpps://doi.org/10.1016/j.jclepro.2020.124745
Kpalo, S. Y., Zainuddin, M. F., Manaf, L. A., & Roslan, A. M. (2020). A review of technical and economic aspects of biomass briquetting. Sustain 12(11), Article 4609. https://doi.org/10.3390/su12114609
Li, Q., Qi, J., Jiang, J., Wu, J., Duan, L., Wang, S., &Hao, J., (2019). Significant reduction in air pollutant emissions from household cooking stoves by replacing raw solid fuels with their carbonized products. Science of the Total Environment, 650, 653-660.
Lubwama, M., & Yiga, V. A. (2017). Development of groundnut shells and bagasse briquettes as sustainable fuel sources for domestic cooking applications in Uganda. Renewable Energy, 111, 532-542. https://doi.org/10.1016/j.renene.2017.04.041
Lubwama, M.,& Yiga, V. A. (2018). Characteristics of briquettes developed from rice and coffee husks for domestic cooking applications in Uganda. Renewable Energy, 118, 43–55. https://doi.org/10.1016/j.renene.2017.11.003
Mfon, P., Akintoye, O. A., Mfon, G., Olorundami, T., Ukata, S. U., & Akintoye, A. T. (2014). Challenges of deforestation in nigeria and the millennium development goals. International Journal of Environment and Bioenergy, 9(2),76–94.
Mitchual, S. J., Frimpong-Mensah, K., Nicholas, A. D., & Akowuah, J. O. (2013). Briquettes from maize Cobs and Ceiba pentandra at room temperature and low compacting pressure without a binder. Energy and Environmental Engineering, 4, 1-7. http://dx.doi.org/10.1186/2251-6832-4-38
Mulu, D., Yimer, F., & Opande, M. (2024). Characterization of briquettes derived from water hyacinth (Eichhornia crassipes) and khat (Catha edulis Forsk) wastes around Bahir Dar City, Ethiopia. Biofuels, 1-15. https://doi.org/10.1080/17597269.2024.2303812
Nahil, M. A., & Williams, P. T. (2012). Characterization of activated carbons with high surface area and variable porosity produced from agricultural cotton waste by chemical activation and co-activation. Waste and Biomass Valorization, 3, 117-130.
Navalta, C. J. L. G., Banaag, K. G. C., Raboy, V. A. O., Go, A. W., Cabatingan, L. K., & Ju, Y. H. (2020). Solid fuel from co-briquetting of sugarcane bagasse and rice bran., Renewable Energy, 147, 1941-1958. https://doi.org//10.1016/j.Renee2019.09.129
Oladeji, J., & Oyetunji, O. (2013). Investigations into physical and fuel characteristics of briquettes produced from cassava and yam peels. Journal of Energy Technologies and Policy, 3(7), 40-46.
Omojogberun, Y. V. (2016). Assessment of the effect of particle size and briquette type on the bulk density and resistance to humidity of some solid biomass briquettes International Journal of Engineering Sciences & Research Technology, 5(11), 234-238. https://doi.org/10.5281/zenodo.165010
Onuegbu, T., Ogbu, I., Ilochi, N. O., Okafor, I., Obumselu, O. F., & Ekpunobi, U. (2010). Enhancing the efficiency of coal briquette in rural Nigeria using Pennisetum purpurem. Advances in Natural and Applied Sciences, 4(1), 299-304.
Orisaleye, J. I., Ogbonnaya, M., Ogundare, A. A., & Ismail, S. O. (2018). Development and Performance evaluation of a natural draft mix-type solar dryer for agricultural products. Journal of Science and Technology, 10(3), 18-24
.
Ossei-Bremang, R. N., Adjei, E. A., Kemausuor, F., Mockenhaupt, T., & Bar-Nosber, T (2024). Effects of compaction pressure, biomass ratio, and binder proportion on the calorific value and mechanical integrity of waste-based briquettes. Bioresource Technology Reports, 25(3), Article 101724.
Oyedemi, T. (2012). Characterization of fuel briquettes from Gmelina arborea (Roxb) sawdust and maize cob particles using Cissus populnea gum as binder [Doctoral dissertation]. University of Ibadan, Nigeria. http://repository.ui.edu.ng/handle/123456789/682
Oyelaran, O., Bolaji, B., Waheed, M., & Adekunle, M. (2015). Performance evaluation of the effect of waste paper on groundnut shell briquette. International Journal of Renewable Energy Development, 4(2) 95-101.
Palanisamy, E., Velusamy, S., Al-Zaqri, N., & Boshaala A. (2023). Characterization and energy evaluation analysis of agro biomass briquettes produced from Gloriosa superba wastes and turmeric leave wastes using cassava starch as binder. Biomass Conversion and Biorefinery, 13, 11321–11337. https://doi.org/10.1007/s13399-023-04543-9
Piebalgs, A. (2017). Renewable energy: Potential and benefits for developing countries. In Proceedings of the Conference (pp. 21-26). Konrad-Adenauer-stifling.
Rudiyanto, B., Agustina, I., Ulma, Z., Prasetyo, D., Hijriawan, M., Piluharto, B., Prasetyo, T., Saha, K., Hossain, M., Ali, M., & Alam, M. (2014). Feasibility study of coconut coir dust. Journal of Bangladesh Agricultural University, 12(2), 369-376.
Shaaban, M., & Petinrin, J. O. (2014). Renewable energy potentials in Nigeria: Meeting rural energy needs. Renewable and Sustainable Energy Review, 29, 72–84. https://doi.org/10.1016/j.rser.2013.08.078
Sotannde, O. A., Oluyege, A. O., & Abah, G. B. (2010). Physical and combustion properties of briquettes from sawdust of Azadirachta India. Journal of Forestry Research, 21(1), 63-67. https://doi.org/10.1007/s11676-010-0010-6
Sotannde, O. A., Oluyege, A. O., & Abah, G. B. (2010). Physical and combustion properties of charcoal briquettes from neem wood residues. International Agrophysics, 24(1), 189–194.
Tao, S. (2016). Efficiency and pollutant emissions from forced-draft biomass-pellet semi-gasifier stoves: Comparison of international and Chinese water boiling test protocols. Energy for Sustainable Development, 32, 22-30. https://doi.org/10.1016/j.esd.2016.02.008
Tembe, E. T., Otache, P. O., & Ekhuemelo, D. O. (2014). Density, shatter index, and combustion properties of briquettes produced from groundnut shells, rice husks, and sawdust of Daniellia oliveri. Journal of Applied Biosciences, 82(1), 7372– 7378.
Velusamy, S., Subbaiyan, A., & Thangam R. S. (2021a). Combustion characteristics of briquette fuels from sorghum panicle–pearl millets using cassava starch binder. Environmental Science and Pollution Research, 28, 21471-21485. https://doi.org/10.1007/s11356-020-11790-0
Velusamy, S., Subbaiyan, A., Kandasamy, S., Shanmugamoorthi, M., & Thirumoorthy, P. (2021b). Combustion characteristics of biomass fuel briquettes from onion peels and tamarind shells. Archives of Environmental & Occupational Health, 77(2), 251–262. https://doi.org/10.1080/19338244.2021.1936437
Velusamy, S., Subbaiyan, A., Shanmugamoorthy, M., & Thirumoorthy, P. (2023). Characterization of solid biomass briquette biofuel from the wastes of Senna auriculata and Ricinus communis using Tapioca starch for sustainable environment. Environmental Science and Pollution Research, 30, 10110–10127. https://doi.org/10.1007/s11356-022-22823-1
Waheed, M. A., & Akogun, O. A. (2020). Quality enhancement of briquette from a cornhusk and cassava peel blends for co-firing in a coal thermal plant. International Journal of Energy Research, 45(2), 1867–1878. https://doi.org/10.1002/er.5865
Waheed, M. A., Akogun, O. A., & Enweremadu, C. C. (2022). An overview of torrefied bioresource briquettes: Quality influencing parameters, enhancement through torrefaction and applications. Bioresources and Bioprocessing, 9(1), Article 122. https://doi.org/10.1186/s40643-022-00608
WHO. (2011). Indoor Air Pollution: Multiple Links between Household Energy and the MDGs. World Health Organization.
World Resources Institute. (2001): World resources 2000–2001: People and ecosystems: The fraying web of life. Agriculture Ecosystems & Environment, 86(1), 109–110.
Wu, S., Zhang, S., Wang, C., Mu, C., & Huang, X., (2018). High-strength charcoal briquette preparation from hydrothermal pretreated biomass wastes. Fuel Processing Technology, 171, 293-300.
Zepeda-Cepeda, C.O., Goche-T´elles, J. R., Palacios-Mendoza, C., Moreno-Anguiano, O., Núnez-Retana, V. D., Heya, M. N., & Carrillo-Parra, A. (2021). Effect of sawdust particle size on physical, mechanical, and energetic properties of Pinus durangensis briquettes. Applied Sciences, 11(9), Article 3805. https://doi.org/10.3390/app11093805
ISSN 0128-7680
e-ISSN 2231-8526