PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 33 (1) Jan. 2025 / JST-5152-2024

 

Rice Extent and Cropping Patterns in Terengganu Malaysia Based on Sentinel-2 Data on Google Earth Engine

Fatchurrachman, Norhidayah Che Soh, Ramisah Mohd Shah, Frisa Irawan Ginting, Sunny Goh Eng Giap, Muhammad Nazir Siham and Rudiyanto

Pertanika Journal of Science & Technology, Volume 33, Issue 1, January 2025

DOI: https://doi.org/10.47836/pjst.33.1.21

Keywords: Cropping pattern, Google earth engine, harvested area, paddy rice map, phenology, Sentinel-2

Published on: 23 January 2025

Rice is a vital staple food in Malaysia, with consumption of 2.7 million MT in 2016, forecasted to rise to 3.5 million MT by 2026. To address food security, the Malaysian government targets a 70% self-sufficiency level (SSL) in rice production, requiring precise spatiotemporal information on rice cultivation. Remote sensing has been widely used to map rice extent in Malaysia, particularly in granary areas (facilitated by irrigation system), the main production zones. However, studies on non-granary areas (without irrigation systems) remain limited. This study addresses this gap by employing the Phenology-Expert Based Unsupervised Classification Method (PEB-UC) with Sentinel-2 time series data on the Google Earth Engine platform to map rice extent and cropping patterns at the sub-district level across Terengganu State, Malaysia, covering both granary and non-granary areas. The results revealed scattered rice parcels totalling 8,184 ha, with 4,377 ha in the IADA KETARA granary area (Besut District) and 3,807 ha in non-granary areas. The maps showed a relative discrepancy of -29.15% with agricultural statistics but demonstrated a strong correlation at the district level (R2 = 0.99; RMSE = 632 ha). Validation of PEB-UC achieved an overall accuracy of 0.979 and a kappa coefficient of 0.957, outperforming Random Forest (RF) and Support Vector Machine (SVM) models. The PEB-UC rice map displayed denser, clearer separability between rice and non-rice compared to supervised models, as shown in the comparison map at https://rudiyanto.users.earthengine.app/view/riceterengganu. This study provides valuable insights into rice cultivation in Terengganu State and supports efforts to enhance food security.

  • Ali, A. M., Savin, I., Poddubskiy, A., Abouelghar, M., Saleh, N., Abutaleb, K., El-Shirbeny, M., & Dokukin, P. (2021). Integrated method for rice cultivation monitoring using sentinel-2 data and leaf area index. Egyptian Journal of Remote Sensing and Space Science, 24(3), 431–441. https://doi.org/10.1016/j.ejrs.2020.06.007

    Breiman, L. (2001). Random forest. Machine Learning, 45, 5–32. https://doi.org/10.1007/978-3-030-62008-0_35

    Brinkhoff, J., Houborg, R., & Dunn, B. W. (2022). Rice ponding date detection in Australia using sentinel-2 and planet fusion imagery. Agricultural Water Management, 273, Article 107907. https://doi.org/10.1016/j.agwat.2022.107907

    Clauss, K., Yan, H., & Kuenzer, C. (2016). Mapping paddy rice in China in 2002, 2005, 2010 and 2014 with MODIS time series. Remote Sensing, 8(5), Article 434. https://doi.org/10.3390/rs8050434

    de Bie, C. A. J. M. D., Nguyen, T. T. H., Ali, A., Scarrott, R., & Skidmore, A. K. (2012). LaHMa: A landscape heterogeneity mapping method using hyper-temporal datasets. International Journal of Geographical Information Science, 26(11), 2177–2192. https://doi.org/10.1080/13658816.2012.712126

    Department of Agriculture Peninsular Malaysia. (2021). Paddy production survey report Malaysia. Department of Agriculture Peninsular Malaysia. https://www.doa.gov.my/doa/resources/aktiviti_sumber/sumber_awam/maklumat_pertanian/
    perangkaan_tanaman/laporan_penyiasatan_padi_musim_utama_2020_2021.pdf

    European Space Agency. (2015). Sentinel-2 user handbook. European Space Agency (ESA). https://doi.org/10.1021/ie51400a018

    Fatchurrachman, Rudiyanto, Soh, N. C., Shah, R. M., Giap, S. G. E., Setiawan, B. I., & Minasny, B. (2022). High-Resolution mapping of paddy rice extent and growth stages across peninsular malaysia using a fusion of sentinel-1 and 2 time series data in google earth engine. Remote Sensing, 14(8), Article 1875. https://doi.org/10.3390/rs14081875

    Feng, F., Gao, M., Liu, R., Yao, S., & Yang, G. (2023). A deep learning framework for crop mapping with reconstructed sentinel-2 time series images. Computers and Electronics in Agriculture, 213, Article 108227. https://doi.org/10.1016/j.compag.2023.108227

    Google Developers. (2021). ESA worldcover 10m v100. Google Developers. https://developers.google.com/earth-engine/datasets/catalog/ESA_WorldCover_v100 Google Developers. (2022). Sentinel-2. Google Developers.

    Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Remote sensing of environment google earth engine : Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031

    Griffiths, P., Nendel, C., & Hostert, P. (2019). Intra-annual reflectance composites from sentinel-2 and landsat for national-scale crop and land cover mapping. Remote Sensing of Environment, 220, 135–151. https://doi.org/10.1016/j.rse.2018.10.031

    Gumma, M. K., Thenkabail, P. S., Maunahan, A., Islam, S., & Nelson, A. (2014). Mapping seasonal rice cropland extent and area in the high cropping intensity environment of Bangladesh using MODIS 500m data for the year 2010. ISPRS Journal of Photogrammetry and Remote Sensing, 91, 98–113. https://doi.org/10.1016/j.isprsjprs.2014.02.007

    Han, J., Zhang, Z., Luo, Y., Cao, J., Zhang, L., Cheng, F., Zhuang, H., Zhang, J., & Tao, F. (2021). NESEA-Rice10: High-resolution annual paddy rice maps for Northeast and Southeast Asia from 2017 to 2019. Earth System Science Data, 13(12), 5969–5986. https://doi.org/10.5194/essd-13-5969-2021

    Han, J., Zhang, Z., Luo, Y., Cao, J., Zhang, L., & Zhuang, H. (2022). Annual paddy rice planting area and cropping intensity datasets and their dynamics in the Asian monsoon region from 2000 to 2020. Agricultural Systems, 200, Article 103437. https://doi.org/10.1016/j.agsy.2022.103437

    Hashim, M. F. C., Nurulhuda, K., Haidar, A. N., Muharam, F. M., Nurulhuda, K., Berahim, Z., Ismail, M. R., Zad, S. N. M., & Zulkafli, Z. (2022). Physiological and yield responses of five rice varieties to nitrogen fertilizer under farmer’s field in IADA Ketara, Terengganu, Malaysia. Sains Malaysiana, 51(2), 359–368. https://doi.org/10.17576/jsm-2022-5102-03

    Holben, B. N. (1986). Characteristics of maximum-value composite images from temporal AVHRR data. International Journal of Remote Sensing, 7(11), 1417–1434. https://doi.org/10.1080/01431168608948945

    Jiang, Q., Tang, Z., Zhou, L., Hu, G., Deng, G., Xu, M., & Sang, G. (2023). Mapping paddy rice planting area in dongting lake area combining time series sentinel-1 and sentinel-2 images. Remote Sensing, 15(11), Article 2794. https://doi.org/10.3390/rs15112794

    Liu, Y., Xiao, D., & Yang, W. (2022). An algorithm for early rice area mapping from satellite remote sensing data in southwestern Guangdong in China based on feature optimization and random Forest. Ecological Informatics, 72, Article 101853. https://doi.org/10.1016/j.ecoinf.2022.101853

    Mansaray, L. R., Yang, L., Kabba, V. T. S., Kanu, A. S., Huang, J., & Wang, F. (2019). Optimising rice mapping in cloud-prone environments by combining quad-source optical with sentinel-1A microwave satellite imagery. GIScience and Remote Sensing, 56(8), 1333–1354. https://doi.org/10.1080/15481603.2019.1646978

    Maxwell, A. E., Warner, T. A., & Fang, F. (2018). Implementation of machine-learning classification in remote sensing: An applied review. International Journal of Remote Sensing, 39(9), 2784–2817. https://doi.org/10.1080/01431161.2018.1433343

    Ministry of Economy Malaysia. (2023). Mid Term Review Twelve Malaysia Plan 2021-2025 Malaysia Madani: Sustainable, Prosperous, High Income. Ministry of Economy.

    Misra, G., Cawkwell, F., & Wingler, A. (2020). Status of phenological research using sentinel-2 data: A review. Remote Sensing, 12(17), 10–14. https://doi.org/10.3390/RS12172760

    Ni, R., Tian, J., Li, X., Yin, D., Li, J., Gong, H., Zhang, J., Zhu, L., & Wu, D. (2021). An enhanced pixel-based phenological feature for accurate paddy rice mapping with Sentinel-2 imagery in Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 178, 282–296. https://doi.org/10.1016/j.isprsjprs.2021.06.018

    Omar, S. C., Shaharudin, A., & Siti, A. T. (2019). The status of the paddy and rice industry in Malaysia. Khazanah Research Institute.

    Omia, E., Bae, H., Park, E., Kim, M. S., Baek, I., Kabenge, I., & Cho, B. K. (2023). Remote sensing in field crop monitoring: A comprehensive review of sensor systems, data analyses and recent advances. Remote Sensing, 15(2), Article 354. https://doi.org/10.3390/rs15020354

    Padarian, J., Minasny, B., & McBratney, A. B. (2020). Machine learning and soil sciences: A review aided by machine learning tools. Soil, 6(1), 35–52. https://doi.org/10.5194/soil-6-35-2020

    Pascual-venteo, A. B., Garcia, J. L., Berger, K., Estévez, J., Vicent, J., Pérez-suay, A., Wittenberghe, S. Van, & Verrelst, J. (2024). Gaussian process regression hybrid models for the top-of-atmosphere retrieval of vegetation traits applied to PRISMA and EnMAP imagery. Remote Sensing, 16(7), Article 1211. https://doi.org/10.3390/rs16071211

    Qiu, B., Yu, L., Yang, P., Wu, W., Chen, J., Zhu, X., & Duan, M. (2024). Mapping upland crop–rice cropping systems for targeted sustainable intensification in South China. Crop Journal, 12(2), 614–629. https://doi.org/10.1016/j.cj.2023.12.010

    Raju, C., Krishnapillai, A., Pillai, A. B., Sarala, A., & Divya, V. (2022). Rice area mapping in Palakkad district of Kerala using sentinel - 2 data and geographic information system technique. Journal of Applied and Natural Science, 14(4), 1360–1366. https://doi.org/10.31018/jans.v14i4.3898

    Ramadhani, F., Pullanagari, R., Kereszturi, G., & Procter, J. (2020). Automatic mapping of rice growth stages using the integration of sentinel-2, mod13q1, and sentinel-1. Remote Sensing, 12(21), Article 3613. https://doi.org/10.3390/rs12213613

    Rauf, U., Qureshi, W. S., Jabbar, H., Zeb, A., Mirza, A., Alanazi, E., Khan, U. S., & Rashid, N. (2022). A new method for pixel classification for rice variety identification using spectral and time series data from sentinel-2 satellite imagery. Computers and Electronics in Agriculture, 193, Article 106731. https://doi.org/10.1016/j.compag.2022.106731

    Rudiyanto, Minasny, B., Shah, R. M., Soh, N. C., Arif, C., & Setiawan, B. I. (2019). Automated near-real-time mapping and monitoring of rice extent, cropping patterns, and growth stages in Southeast Asia using sentinel-1 time series on a Google Earth Engine platform. Remote Sensing, 11(14), Article 1666. https://doi.org/10.3390/rs11141666

    Setiyono, T. D., Quicho, E. D., Holecz, F. H., Khan, N. I., Romuga, G., Maunahan, A., Garcia, C., Rala, A., Raviz, J., Collivignarelli, F., Gatti, L., Barbieri, M., Phuong, D. M., Minh, V. Q., Vo, Q. T., Intrman, A., Rakwatin, P., Sothy, M., Veasna, T., … & Mabalay, M. R. O. (2018). Rice yield estimation using synthetic aperture radar (SAR) and the ORYZA crop growth model: Development and application of the system in South and South-east Asian countries. International Journal of Remote Sensing, 40(21), 8093–8124. https://doi.org/10.1080/01431161.2018.1547457

    Shen, R., Pan, B., Peng, Q., Dong, J., Chen, X., Zhang, X., Ye, T., Huang, J., & Yuan, W. (2023). High-resolution distribution maps of single-season rice in China from 2017 to 2022. Earth System Science Data, 15(7), 3203–3222. https://doi.org/10.5194/essd-15-3203-2023

    Suratman, S., Sailan, M. I. M., Hee, Y. Y., Bedurus, E. A., & Latif, M. T. (2015). A preliminary study of water quality index in Terengganu River basin, Malaysia. Sains Malaysiana, 44(1), 67–73. https://doi.org/10.17576/jsm-2015-4401-10

    Talema, T., & Hailu, B. T. (2020). Mapping rice crop using sentinels (1 SAR and 2 MSI) images in tropical area: A case study in Fogera wereda, Ethiopia. Remote Sensing Applications: Society and Environment, 18, Article 100290. https://doi.org/10.1016/j.rsase.2020.100290

    Thorp, K. R., & Drajat, D. (2021). Deep machine learning with Sentinel satellite data to map paddy rice production stages across West Java, Indonesia. Remote Sensing of Environment, 265, Article 112679. https://doi.org/10.1016/j.rse.2021.112679

    Tiwari, V., Tulbure, M. G., Caineta, J., Gaines, M. D., Perin, V., Kamal, M., Krupnik, T. J., Aziz, M. A., & Islam, A. F. M. T. (2024). Automated in-season rice crop mapping using sentinel time-series data and Google Earth Engine : A case study in climate-risk prone Bangladesh. Journal of Environmental Management, 351, Article 119615. https://doi.org/10.1016/j.jenvman.2023.119615

    Wang, G., Meng, D., Chen, R., Yang, G., Wang, L., Jin, H., Ge, X., & Feng, H. (2024). Automatic rice early-season mapping based on simple sensing images. Remote Sensing, 16(2), Article 277. https://doi.org/10.3390/rs16020277

    Wang, M., Wang, J., Chen, L., & Du, Z. (2022). Mapping paddy rice and rice phenology with sentinel-1 SAR time series using a unified dynamic programming framework. Open Geosciences, 14(1), 414–428. https://doi.org/10.1515/geo-2022-0369

    Wang, M., Wang, J., Cui, Y., Liu, J., & Chen, L. (2022). Agricultural field boundary delineation with satellite image segmentation for high-resolution crop mapping: A case study of rice paddy. Agronomy, 12(10), Article 2342. https://doi.org/10.3390/agronomy12102342

    Xiao, W., Xu, S., & He, T. (2021). Mapping paddy rice with sentinel-1/2 and phenology-, object-based algorithm - A implementation in Hangjiahu Plain in China using GEE platform. Remote Sensing, 13(5), Article 990. https://doi.org/10.3390/rs13050990

    Zanaga, D., Kerchove, R. V. D., Keersmaecker, W. D., Souverijns, N., Brockmann, C., Quast, R., Wevers, J., Grosu, A., Paccini, A., Vergnaud, S., Cartus, O., Santoro, M., Fritz, S., Georgieva, I., Lesiv, M., Carter, S., Herold, M., Li, L., Tsendbazar, N. E., … Arino, O. (2021). ESA World Cover 10m 2020 v100. European Space Agency (ESA). https://doi.org/10.5281/zenodo.5571936

    Zhao, R., Li, Y., & Ma, M. (2021). Mapping paddy rice with satellite remote sensing: A review. Sustainability, 13(2), Article 503. https://doi.org/10.3390/su13020503