e-ISSN 2231-8526
ISSN 0128-7680
Dongqi Zhang, Zainura Idrus and Raseeda Hamzah
Pertanika Journal of Science & Technology, Volume 33, Issue 1, January 2025
DOI: https://doi.org/10.47836/pjst.33.1.07
Keywords: Concept drift, distance metric, fault detection, wind turbines
Published on: 23 January 2025
The Supervisory Control and Data Acquisition (SCADA) system in wind turbines generates substantial data that remains underutilized in terms of wind farm operation and maintenance (O&M). Numerous fault detection methods leveraging SCADA data are being extensively researched to reduce O&M costs. The detection methods are revolutionizing wind farm O&M strategies, shifting from scheduled passive detection to predictive active detection, with the potential to significantly reduce spare parts and labor costs. This paper presents a systematic review of wind turbine fault detection methods based on concept drift and distance metrics, employing the PRISMA methodology. The selected literature is analyzed from three perspectives: fault components, modeling methods, and data sources. Additionally, this review addresses research questions related to current trends, concept drift applications, and distance metric utilization in wind turbine fault detection. Lastly, it provides valuable insights for researchers and industry practitioners in wind energy engineering to explore future research and development in fault detection techniques for enhancing the reliability and efficiency of wind turbine operations.
Agasthian, A., Pamula, R., & Kumaraswamidhas, L. A. (2019). Fault classification and detection in wind turbine using cuckoo-optimized support vector machine. Neural Computing & Applications, 31(5), 1503–1511. https://doi.org/10.1007/s00521-018-3690-z
Aziz, U., Charbonnier, S., Berenguer, C., Lebranchu, A., & Prevost, F. (2021). Critical comparison of power-based wind turbine fault-detection methods using a realistic framework for SCADA data simulation. Renewable & Sustainable Energy Reviews, 144, Article 110961. https://doi.org/10.1016/j.rser.2021.110961
Aziz, U., Charbonnier, S., Berenguer, C., Lebranchu, A., & Prevost, F. (2022). A multi-turbine approach for improving performance of wind turbine power-based fault detection methods. Energies, 15(8), Article 2806. https://doi.org/10.3390/en15082806
Badihi, H., Zhang, Y., Jiang, B., Pillay, P., & Rakheja, S. (2022). A comprehensive review on signal-based and model-based condition monitoring of wind turbines: Fault diagnosis and lifetime prognosis. Proceedings of the IEEE, 110(6), 754–806. https://doi.org/10.1109/JPROC.2022.3171691
Bilendo, F., Badihi, H., Lu, N., Cambron, P., & Jiang, B. (2021, September 17-20). An intelligent data-driven machine learning approach for fault detection of wind turbines. [Paper presentation]. 6th International Conference on Power and Renewable Energy (ICPRE), Shanghai, China. https://doi.org/10.1109/ICPRE52634.2021.9635340
Bilendo, F., Badihi, H., Lu, N., Cambron, P., & Jiang, B. (2022). Power curve-based fault detection method for wind turbines. IFAC-PapersOnLine, 55(6), 408–413. https://doi.org/10.1016/j.ifacol.2022.07.163
Bo, Y. F., Zeng, X. J., Yang, M., & Zhu, Y. (2019). Anomaly detection for wind turbine gearbox oil pressure difference based on SCADA data. IOP Conference Series: Earth and Environmental Science 354, Article 012115. https://doi.org/10.1088/1755-1315/354/1/012115
Catelani, M., Ciani, L., Galar, D., & Patrizi, G. (2020). Risk assessment of a wind turbine: A new FMECA-based tool with RPN threshold estimation. IEEE Access, 8, 20181–20190. https://doi.org/10.1109/ACCESS.2020.2968812
Chacon, A. M. P., Ramirez, I. S., & Marquez, F. P. G. (2020). False alarms analysis of wind turbine bearing system. Sustainability, 12(19), Article 7867. https://doi.org/10.3390/su12197867
Dhanola, A., & Garg, H. C. (2020). Tribological challenges and advancements in wind turbine bearings: A review. Engineering Failure Analysis, 118, Article 104885. https://doi.org/10.1016/j.engfailanal.2020.104885
Díaz, S., Carta, J. A., & Castañeda, A. (2020). Influence of the variation of meteorological and operational parameters on estimation of the power output of a wind farm with active power control. Renewable Energy, 159, 812–826. https://doi.org/10.1016/j.renene.2020.05.187
Du, W., Guo, Z., Li, C., Gong, X., & Pu, Z. (2022). From anomaly detection to novel fault discrimination for wind turbine gearboxes with a sparse isolation encoding forest. IEEE Transactions on Instrumentation and Measurement, 71, Article 2512710. https://doi.org/10.1109/TIM.2022.3187737
Feng, K., Ji, J. C., Ni, Q., & Beer, M. (2023). A review of vibration-based gear wear monitoring and prediction techniques. Mechanical Systems and Signal Processing, 182, Article 109605. https://doi.org/10.1016/j.ymssp.2022.109605
Feng, K., Ji, J. C., Zhang, Y., Ni, Q., Liu, Z., & Beer, M. (2023). Digital twin-driven intelligent assessment of gear surface degradation. Mechanical Systems and Signal Processing, 186, Article 109896. https://doi.org/10.1016/j.ymssp.2022.109896
Fernandes, M., Corchado, J. M., & Marreiros, G. (2022). Machine learning techniques applied to mechanical fault diagnosis and fault prognosis in the context of real industrial manufacturing use-cases: A systematic literature review. Applied Intelligence, 52(12), 14246–14280. https://doi.org/10.1007/s10489-022-03344-3
Fotiadou, K., Velivassaki, T. H., Voulkidis, A., Skias, D., De Santis, C., & Zahariadis, T. (2020). Proactive critical energy infrastructure protection via deep feature learning. Energies, 13(10), Article 2622. https://doi.org/10.3390/en13102622
Herp, J., Pedersen, N. L., & Nadimi, E. S. (2020). Assessment of early stopping through statistical health prognostic models for empirical RUL estimation in wind turbine main bearing failure monitoring. Energies, 13(1), Article 83. https://doi.org/10.3390/en13010083
Hu, Y., Baraldi, P., Di Maio, F., Liu, J., & Zio, E. (2021). A method for fault diagnosis in evolving environment using unlabeled data. Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability, 235(1), 33–49. https://doi.org/10.1177/1748006X20946529
Jastrzebska, A., Hernández, A. M., Nápoles, G., Salgueiro, Y., & Vanhoof, K. (2022). Measuring wind turbine health using fuzzy-concept-based drifting models. Renewable Energy, 190, 730–740. https://doi.org/10.1016/j.renene.2022.03.116
Jia, X., Han, Y., Li, Y., Sang, Y., & Zhang, G. (2021). Condition monitoring and performance forecasting of wind turbines based on denoising autoencoder and novel convolutional neural networks. Energy Reports, 7, 6354–6365. https://doi.org/10.1016/j.egyr.2021.09.080
Kavaz, A. G., & Barutcu, B. (2018). Fault detection of wind turbine sensors using artificial neural networks. Journal of Sensors, 2018(1), Article 5628429. https://doi.org/10.1155/2018/5628429
Korkos, P., Linjama, M., Kleemola, J., & Lehtovaara, A. (2022). Data annotation and feature extraction in fault detection in a wind turbine hydraulic pitch system. Renewable Energy, 185, 692–703. https://doi.org/10.1016/j.renene.2021.12.047
Latiffianti, E., Sheng, S., & Ding, Y. (2022). Wind turbine gearbox failure detection through cumulative sum of multivariate time series data. Frontiers in Energy Research, 10, Article 904622. https://doi.org/10.3389/fenrg.2022.904622
Lin, C. C., Deng, D. J., Kuo, C. H., & Chen, L. (2019). Concept drift detection and adaption in big imbalance industrial IoT data using an ensemble learning method of offline classifiers. IEEE Access, 7, 56198–56207. https://doi.org/10.1109/ACCESS.2019.2912631
Liu, H., Yu, C., & Yu, C. (2021). A new hybrid model based on secondary decomposition, reinforcement learning and SRU network for wind turbine gearbox oil temperature forecasting. Measurement, 178, Article 109347. https://doi.org/10.1016/j.measurement.2021.109347
Liu, Y., Wu, Z., & Wang, X. (2020). Research on fault diagnosis of wind turbine based on SCADA data. IEEE Access, 8, 185557–185569. https://doi.org/10.1109/ACCESS.2020.3029435
Mammadov, E., Farrokhabadi, M., & Cañizares, C. A. (2021, October 18-21). AI-enabled predictive maintenance of wind generators. [Paper presentation]. IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), Espoo, Finland. https://doi.org/10.1109/ISGTEurope52324.2021.9640162
Martinez, I., Viles, E., & Cabrejas, I. (2018). Labelling drifts in a fault detection system for wind turbine maintenance. In J. DelSer, E. Osaba, M. N. Bilbao, J. J. SanchezMedina, M. Vecchio, & X. S. Yang (Eds.), Intelligent Distributed Computing XII (pp. 145–156). Springer. https://doi.org/10.1007/978-3-319-99626-4_13
Márquez, F. P. G., & Chacón, A. M. P. (2020). A review of non-destructive testing on wind turbines blades. Renewable Energy, 161, 998–1010. https://doi.org/10.1016/j.renene.2020.07.145
McKinnon, C., Carroll, J., McDonald, A., Koukoura, S., Infield, D., & Soraghan, C. (2020). Comparison of new anomaly detection technique for wind turbine condition monitoring using gearbox SCADA data. Energies, 13(19), Article 5152. https://doi.org/10.3390/en13195152
Mohammadi, H. G., Arshad, R., Rautmare, S., Manjunatha, S., Kuschel, M., Jentzsch, F. P., Platzner, M., Boschmann, A., & Schollbach, D. (2020, September 8-11). DeepWind: An accurate wind turbine condition monitoring framework via deep learning on embedded platforms. 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vienna, Austria’s. https://doi.org/10.1109/ETFA46521.2020.9211880
Ni, Q., Ji, J. C., Feng, K., Zhang, Y., Lin, D., & Zheng, J. (2024). Data-driven bearing health management using a novel multi-scale fused feature and gated recurrent unit. Reliability Engineering & System Safety, 242, Article 109753. https://doi.org/10.1016/j.ress.2023.109753
Ni, Q., Ji, J. C., Halkon, B., Feng, K., & Nandi, A. K. (2023). Physics-informed residual network (PIResNet) for rolling element bearing fault diagnostics. Mechanical Systems and Signal Processing, 200, Article 110544. https://doi.org/10.1016/j.ymssp.2023.110544
Pandit, R. K., & Infield, D. (2018). SCADA-based wind turbine anomaly detection using gaussian process models for wind turbine condition monitoring purposes. IET Renewable Power Generation, 12(11), 1249–1255. https://doi.org/10.1049/iet-rpg.2018.0156
Pandit, R. K., & Infield, D. (2019). Comparative analysis of gaussian process power curve models based on different stationary covariance functions for the purpose of improving model accuracy. Renewable Energy, 140, 190–202. https://doi.org/10.1016/j.renene.2019.03.047
Peña, M., Lanzarini, L., Cerrada, M., Cabrera, D., & Sánchez, R. V. (2021, October 12-15). Data-driven gearbox fault severity diagnosis based on concept drift. IEEE Fifth Ecuador Technical Chapters Meeting (ETCM), Cuenca, Ecuador. https://doi.org/10.1109/ETCM53643.2021.9590689
Pozo, F., Vidal, Y., & Salgado, O. (2018). Wind turbine condition monitoring strategy through multiway PCA and multivariate inference. Energies, 11(4), Article 749. https://doi.org/10.3390/en11040749
Pratama, M., Pedrycz, W., & Lughofer, E. (2018). Evolving ensemble fuzzy classifier. IEEE Transactions on Fuzzy Systems, 26(5), 2552–2567. https://doi.org/10.1109/TFUZZ.2018.2796099
Puerto-Santana, C., Bielza, C., Diaz-Rozo, J., Ramirez-Gargallo, G., Mantovani, F., Virumbrales, G., Labarta, J., & Larranaga, P. (2022). Asymmetric HMMs for online ball-bearing health assessments. IEEE Internet of Things Journal, 9(20), 20160–20177. https://doi.org/10.1109/JIOT.2022.3173064
Qu, F., Liu, J., Liu, X., & Jiang, L. (2021). A multi-fault detection method with improved triplet loss based on hard sample mining. IEEE Transactions on Sustainable Energy, 12(1), 127–137. https://doi.org/10.1109/TSTE.2020.2985217
Quanlin, Z., Xiaoxiao, Z., & Chenggang, H. (2020, December 18-20). An automatic data cleaning and operating conditions classification method for wind turbines scada system. 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu, China. https://doi.org/10.1109/ICCWAMTIP51612.2020.9317436
Renstrom, N., Bangalore, P., & Highcock, E. (2020). System-wide anomaly detection in wind turbines using deep autoencoders. Renewable Energy, 157, 647–659. https://doi.org/10.1016/j.renene.2020.04.148
Rogers, T. J., Gardner, P., Dervilis, N., Worden, K., Maguire, A. E., Papatheou, E., & Cross, E. J. (2020). Probabilistic modelling of wind turbine power curves with application of heteroscedastic gaussian process regression. Renewable Energy, 148, 1124–1136. https://doi.org/10.1016/j.renene.2019.09.145
Sousa, P. H. F. D., Nascimento, N. M. M., Filho, P. P. R., & Medeiros, C. M. S. D. (2018, July 8-13). Detection and classification of faults in induction generator applied into wind turbines through a machine learning approach. [Paper presentation]. International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil. https://doi.org/10.1109/IJCNN.2018.8489521
Tang, H., Dai, H. L., & Du, Y. (2022). Bearing fault detection for doubly fed induction generator based on stator current. IEEE Transactions on Industrial Electronics, 69(5), 5267–5276. https://doi.org/10.1109/TIE.2021.3080216
Tao, L., Siqi, Q., Zhang, Y., & Shi, H. (2019). Abnormal detection of wind turbine based on SCADA data mining. Mathematical Problems in Engineering, 2019(1), Article 5976843. https://doi.org/10.1155/2019/5976843
Tong, R., Li, P., Gao, L., Lang, X., Miao, A., & Shen, X. (2022). A novel ellipsoidal semisupervised extreme learning machine algorithm and its application in wind turbine blade icing fault detection. IEEE Transactions on Instrumentation and Measurement, 71, Article 3523116. https://doi.org/10.1109/TIM.2022.3205920
Trizoglou, P., Liu, X., & Lin, Z. (2021). Fault detection by an ensemble framework of extreme gradient boosting (XGBoost) in the operation of offshore wind turbines. Renewable Energy, 179, 945–962. https://doi.org/10.1016/j.renene.2021.07.085
Turnbull, A., Carroll, J., & McDonald, A. (2022). A comparative analysis on the variability of temperature thresholds through time for wind turbine generators using normal behaviour modelling. Energies, 15(14), Article 5298. https://doi.org/10.3390/en15145298
Tutiven, C., Vidal, Y., Acho, L., & Rodellar, J. (2018). Fault detection and isolation of pitch actuator faults in a floating wind turbine. IFAC-PapersOnLine, 51(24), 480–487. https://doi.org/10.1016/j.ifacol.2018.09.620
Velandia-Cardenas, C., Vidal, Y., & Pozo, F. (2021). Wind turbine fault detection using highly imbalanced real SCADA data. Energies, 14(6), Article 1728. https://doi.org/10.3390/en14061728
Velasquez, R. M. A., Tataje, F. A. O., & Ancaya-Martinez, M. D. C. E. (2021). Early detection of faults and stall effects associated to wind farms. Sustainable Energy Technologies and Assessments, 47, Article 101441. https://doi.org/10.1016/j.seta.2021.101441
Wang, B., Sun, N., Wang, Z., & Han, G. (2021, November 26-28). An adaptive incremental learning algorithm based on shared nearest neighbors in fault detection. [Paper presentation] Computing, Communications and IoT Applications (ComComAp), Shenzhen, China. https://doi.org/10.1109/ComComAp53641.2021.9652989
Wang, L., Jia, S., Yan, X., Ma, L., & Fang, J. (2022). A SCADA-data-driven condition monitoring method of wind turbine generators. IEEE Access, 10, 67532–67540. https://doi.org/10.1109/ACCESS.2022.3185259
Wang, L., Zhang, Z., Long, H., Xu, J., & Liu, R. (2017). Wind turbine gearbox failure identification with deep neural networks. IEEE Transactions on Industrial Informatics, 13(3), 1360–1368. https://doi.org/10.1109/TII.2016.2607179
Wang, L., Zhang, Z., Xu, J., & Liu, R. (2018). Wind turbine blade breakage monitoring with deep autoencoders. IEEE Transactions on Smart Grid, 9(4), 2824–2833. https://doi.org/10.1109/TSG.2016.2621135
Wang, X., Zhao, Q., Yang, X., & Zeng, B. (2021). Analysis of long-term temperature monitoring of multiple wind turbines. Measurement & Control, 54(5–6), 627–640. https://doi.org/10.1177/00202940211013061
Wang, Y., Ma, X., & Qian, P. (2018). Wind turbine fault detection and identification through PCA-based optimal variable selection. IEEE Transactions on Sustainable Energy, 9(4), 1627–1635. https://doi.org/10.1109/TSTE.2018.2801625
Wei, L., Qian, Z., & Zareipour, H. (2020). Wind turbine pitch system condition monitoring and fault detection based on optimized relevance vector machine regression. IEEE Transactions on Sustainable Energy, 11(4), 2326–2336. https://doi.org/10.1109/TSTE.2019.2954834
Xiao, X., Liu, J., Liu, D., Tang, Y., & Zhang, F. (2022). Condition monitoring of wind turbine main bearing based on multivariate time series forecasting. Energies, 15(5), Article 1951. https://doi.org/10.3390/en15051951
Xu, Q., Fan, Z., Jia, W., & Jiang, C. (2019). Quantile regression neural network-based fault detection scheme for wind turbines with application to monitoring a bearing. Wind Energy, 22(10), 1390–1401. https://doi.org/10.1002/we.2375
Yang, L., Wang, L., Zheng, Z., & Zhang, Z. (2022). A continual learning-based framework for developing a single wind turbine cybertwin adaptively serving multiple modeling tasks. IEEE Transactions on Industrial Informatics, 18(7), 4912–4921. https://doi.org/10.1109/TII.2021.3130721
Yang, L., & Zhang, Z. (2021a). A conditional convolutional autoencoder-based method for monitoring wind turbine blade breakages. IEEE Transactions on Industrial Informatics, 17(9), 6390–6398. https://doi.org/10.1109/TII.2020.3011441
Yang, L., & Zhang, Z. (2021b). Wind turbine gearbox failure detection based on SCADA data: A deep learning-based approach. IEEE Transactions on Instrumentation and Measurement, 70, Article 3507911. https://doi.org/10.1109/TIM.2020.3045800
Yang, Q., Liu, G., Bao, Y., & Chen, Q. (2022). Fault detection of wind turbine generator bearing using attention-based neural networks and voting-based strategy. IEEE/ASME Transactions on Mechatronics, 27(5), 3008–3018. https://doi.org/10.1109/TMECH.2021.3127213
Yi, H., Jiang, Q., Yan, X., & Wang, B. (2021). Imbalanced classification based on minority clustering synthetic minority oversampling technique with wind turbine fault detection application. IEEE Transactions on Industrial Informatics, 17(9), 5867–5875. https://doi.org/10.1109/TII.2020.3046566
Zenisek, J., Holzinger, F., & Affenzeller, M. (2019). Machine learning based concept drift detection for predictive maintenance. Computers & Industrial Engineering, 137, Article 106031. https://doi.org/10.1016/j.cie.2019.106031
Zhang, D., Qian, L., Mao, B., Huang, C., Huang, B., & Si, Y. (2018). A data-driven design for fault detection of wind turbines using random forests and XGboost. IEEE Access, 6, 21020–21031. https://doi.org/10.1109/ACCESS.2018.2818678
Zhang, K., Tang, B., Deng, L., & Yu, X. (2021). Fault detection of wind turbines by subspace reconstruction-based robust kernel principal component analysis. IEEE Transactions on Instrumentation and Measurement, 70, Article 3515711. https://doi.org/10.1109/TIM.2021.3075742
Zhang, S., & Lang, Z. Q. (2020). SCADA-data-based wind turbine fault detection: A dynamic model sensor method. Control Engineering Practice, 102, Article 104546. https://doi.org/10.1016/j.conengprac.2020.104546
Zhao, H., Chen, G., Hong, H., & Zhu, X. (2021). Remote structural health monitoring for industrial wind turbines using short-range doppler radar. IEEE Transactions on Instrumentation and Measurement, 70, Article 8002609. https://doi.org/10.1109/TIM.2021.3053959
ISSN 0128-7680
e-ISSN 2231-8526