PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 33 (1) Jan. 2025 / JST-5078-2024

 

Concept Drift Early Fault Detection in Wind Turbine Based on Distance Metric: A Systematic Literature Review

Dongqi Zhang, Zainura Idrus and Raseeda Hamzah

Pertanika Journal of Science & Technology, Volume 33, Issue 1, January 2025

DOI: https://doi.org/10.47836/pjst.33.1.07

Keywords: Concept drift, distance metric, fault detection, wind turbines

Published on: 23 January 2025

The Supervisory Control and Data Acquisition (SCADA) system in wind turbines generates substantial data that remains underutilized in terms of wind farm operation and maintenance (O&M). Numerous fault detection methods leveraging SCADA data are being extensively researched to reduce O&M costs. The detection methods are revolutionizing wind farm O&M strategies, shifting from scheduled passive detection to predictive active detection, with the potential to significantly reduce spare parts and labor costs. This paper presents a systematic review of wind turbine fault detection methods based on concept drift and distance metrics, employing the PRISMA methodology. The selected literature is analyzed from three perspectives: fault components, modeling methods, and data sources. Additionally, this review addresses research questions related to current trends, concept drift applications, and distance metric utilization in wind turbine fault detection. Lastly, it provides valuable insights for researchers and industry practitioners in wind energy engineering to explore future research and development in fault detection techniques for enhancing the reliability and efficiency of wind turbine operations.

  • Agasthian, A., Pamula, R., & Kumaraswamidhas, L. A. (2019). Fault classification and detection in wind turbine using cuckoo-optimized support vector machine. Neural Computing & Applications, 31(5), 1503–1511. https://doi.org/10.1007/s00521-018-3690-z

    Aziz, U., Charbonnier, S., Berenguer, C., Lebranchu, A., & Prevost, F. (2021). Critical comparison of power-based wind turbine fault-detection methods using a realistic framework for SCADA data simulation. Renewable & Sustainable Energy Reviews, 144, Article 110961. https://doi.org/10.1016/j.rser.2021.110961

    Aziz, U., Charbonnier, S., Berenguer, C., Lebranchu, A., & Prevost, F. (2022). A multi-turbine approach for improving performance of wind turbine power-based fault detection methods. Energies, 15(8), Article 2806. https://doi.org/10.3390/en15082806

    Badihi, H., Zhang, Y., Jiang, B., Pillay, P., & Rakheja, S. (2022). A comprehensive review on signal-based and model-based condition monitoring of wind turbines: Fault diagnosis and lifetime prognosis. Proceedings of the IEEE, 110(6), 754–806. https://doi.org/10.1109/JPROC.2022.3171691

    Bilendo, F., Badihi, H., Lu, N., Cambron, P., & Jiang, B. (2021, September 17-20). An intelligent data-driven machine learning approach for fault detection of wind turbines. [Paper presentation]. 6th International Conference on Power and Renewable Energy (ICPRE), Shanghai, China. https://doi.org/10.1109/ICPRE52634.2021.9635340

    Bilendo, F., Badihi, H., Lu, N., Cambron, P., & Jiang, B. (2022). Power curve-based fault detection method for wind turbines. IFAC-PapersOnLine, 55(6), 408–413. https://doi.org/10.1016/j.ifacol.2022.07.163

    Bo, Y. F., Zeng, X. J., Yang, M., & Zhu, Y. (2019). Anomaly detection for wind turbine gearbox oil pressure difference based on SCADA data. IOP Conference Series: Earth and Environmental Science 354, Article 012115. https://doi.org/10.1088/1755-1315/354/1/012115

    Catelani, M., Ciani, L., Galar, D., & Patrizi, G. (2020). Risk assessment of a wind turbine: A new FMECA-based tool with RPN threshold estimation. IEEE Access, 8, 20181–20190. https://doi.org/10.1109/ACCESS.2020.2968812

    Chacon, A. M. P., Ramirez, I. S., & Marquez, F. P. G. (2020). False alarms analysis of wind turbine bearing system. Sustainability, 12(19), Article 7867. https://doi.org/10.3390/su12197867

    Dhanola, A., & Garg, H. C. (2020). Tribological challenges and advancements in wind turbine bearings: A review. Engineering Failure Analysis, 118, Article 104885. https://doi.org/10.1016/j.engfailanal.2020.104885

    Díaz, S., Carta, J. A., & Castañeda, A. (2020). Influence of the variation of meteorological and operational parameters on estimation of the power output of a wind farm with active power control. Renewable Energy, 159, 812–826. https://doi.org/10.1016/j.renene.2020.05.187

    Du, W., Guo, Z., Li, C., Gong, X., & Pu, Z. (2022). From anomaly detection to novel fault discrimination for wind turbine gearboxes with a sparse isolation encoding forest. IEEE Transactions on Instrumentation and Measurement, 71, Article 2512710. https://doi.org/10.1109/TIM.2022.3187737

    Feng, K., Ji, J. C., Ni, Q., & Beer, M. (2023). A review of vibration-based gear wear monitoring and prediction techniques. Mechanical Systems and Signal Processing, 182, Article 109605. https://doi.org/10.1016/j.ymssp.2022.109605

    Feng, K., Ji, J. C., Zhang, Y., Ni, Q., Liu, Z., & Beer, M. (2023). Digital twin-driven intelligent assessment of gear surface degradation. Mechanical Systems and Signal Processing, 186, Article 109896. https://doi.org/10.1016/j.ymssp.2022.109896

    Fernandes, M., Corchado, J. M., & Marreiros, G. (2022). Machine learning techniques applied to mechanical fault diagnosis and fault prognosis in the context of real industrial manufacturing use-cases: A systematic literature review. Applied Intelligence, 52(12), 14246–14280. https://doi.org/10.1007/s10489-022-03344-3

    Fotiadou, K., Velivassaki, T. H., Voulkidis, A., Skias, D., De Santis, C., & Zahariadis, T. (2020). Proactive critical energy infrastructure protection via deep feature learning. Energies, 13(10), Article 2622. https://doi.org/10.3390/en13102622

    Herp, J., Pedersen, N. L., & Nadimi, E. S. (2020). Assessment of early stopping through statistical health prognostic models for empirical RUL estimation in wind turbine main bearing failure monitoring. Energies, 13(1), Article 83. https://doi.org/10.3390/en13010083

    Hu, Y., Baraldi, P., Di Maio, F., Liu, J., & Zio, E. (2021). A method for fault diagnosis in evolving environment using unlabeled data. Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability, 235(1), 33–49. https://doi.org/10.1177/1748006X20946529

    Jastrzebska, A., Hernández, A. M., Nápoles, G., Salgueiro, Y., & Vanhoof, K. (2022). Measuring wind turbine health using fuzzy-concept-based drifting models. Renewable Energy, 190, 730–740. https://doi.org/10.1016/j.renene.2022.03.116

    Jia, X., Han, Y., Li, Y., Sang, Y., & Zhang, G. (2021). Condition monitoring and performance forecasting of wind turbines based on denoising autoencoder and novel convolutional neural networks. Energy Reports, 7, 6354–6365. https://doi.org/10.1016/j.egyr.2021.09.080

    Kavaz, A. G., & Barutcu, B. (2018). Fault detection of wind turbine sensors using artificial neural networks. Journal of Sensors, 2018(1), Article 5628429. https://doi.org/10.1155/2018/5628429

    Korkos, P., Linjama, M., Kleemola, J., & Lehtovaara, A. (2022). Data annotation and feature extraction in fault detection in a wind turbine hydraulic pitch system. Renewable Energy, 185, 692–703. https://doi.org/10.1016/j.renene.2021.12.047

    Latiffianti, E., Sheng, S., & Ding, Y. (2022). Wind turbine gearbox failure detection through cumulative sum of multivariate time series data. Frontiers in Energy Research, 10, Article 904622. https://doi.org/10.3389/fenrg.2022.904622

    Lin, C. C., Deng, D. J., Kuo, C. H., & Chen, L. (2019). Concept drift detection and adaption in big imbalance industrial IoT data using an ensemble learning method of offline classifiers. IEEE Access, 7, 56198–56207. https://doi.org/10.1109/ACCESS.2019.2912631

    Liu, H., Yu, C., & Yu, C. (2021). A new hybrid model based on secondary decomposition, reinforcement learning and SRU network for wind turbine gearbox oil temperature forecasting. Measurement, 178, Article 109347. https://doi.org/10.1016/j.measurement.2021.109347

    Liu, Y., Wu, Z., & Wang, X. (2020). Research on fault diagnosis of wind turbine based on SCADA data. IEEE Access, 8, 185557–185569. https://doi.org/10.1109/ACCESS.2020.3029435

    Mammadov, E., Farrokhabadi, M., & Cañizares, C. A. (2021, October 18-21). AI-enabled predictive maintenance of wind generators. [Paper presentation]. IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), Espoo, Finland. https://doi.org/10.1109/ISGTEurope52324.2021.9640162

    Martinez, I., Viles, E., & Cabrejas, I. (2018). Labelling drifts in a fault detection system for wind turbine maintenance. In J. DelSer, E. Osaba, M. N. Bilbao, J. J. SanchezMedina, M. Vecchio, & X. S. Yang (Eds.), Intelligent Distributed Computing XII (pp. 145–156). Springer. https://doi.org/10.1007/978-3-319-99626-4_13

    Márquez, F. P. G., & Chacón, A. M. P. (2020). A review of non-destructive testing on wind turbines blades. Renewable Energy, 161, 998–1010. https://doi.org/10.1016/j.renene.2020.07.145

    McKinnon, C., Carroll, J., McDonald, A., Koukoura, S., Infield, D., & Soraghan, C. (2020). Comparison of new anomaly detection technique for wind turbine condition monitoring using gearbox SCADA data. Energies, 13(19), Article 5152. https://doi.org/10.3390/en13195152

    Mohammadi, H. G., Arshad, R., Rautmare, S., Manjunatha, S., Kuschel, M., Jentzsch, F. P., Platzner, M., Boschmann, A., & Schollbach, D. (2020, September 8-11). DeepWind: An accurate wind turbine condition monitoring framework via deep learning on embedded platforms. 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vienna, Austria’s. https://doi.org/10.1109/ETFA46521.2020.9211880

    Ni, Q., Ji, J. C., Feng, K., Zhang, Y., Lin, D., & Zheng, J. (2024). Data-driven bearing health management using a novel multi-scale fused feature and gated recurrent unit. Reliability Engineering & System Safety, 242, Article 109753. https://doi.org/10.1016/j.ress.2023.109753

    Ni, Q., Ji, J. C., Halkon, B., Feng, K., & Nandi, A. K. (2023). Physics-informed residual network (PIResNet) for rolling element bearing fault diagnostics. Mechanical Systems and Signal Processing, 200, Article 110544. https://doi.org/10.1016/j.ymssp.2023.110544

    Pandit, R. K., & Infield, D. (2018). SCADA-based wind turbine anomaly detection using gaussian process models for wind turbine condition monitoring purposes. IET Renewable Power Generation, 12(11), 1249–1255. https://doi.org/10.1049/iet-rpg.2018.0156

    Pandit, R. K., & Infield, D. (2019). Comparative analysis of gaussian process power curve models based on different stationary covariance functions for the purpose of improving model accuracy. Renewable Energy, 140, 190–202. https://doi.org/10.1016/j.renene.2019.03.047

    Peña, M., Lanzarini, L., Cerrada, M., Cabrera, D., & Sánchez, R. V. (2021, October 12-15). Data-driven gearbox fault severity diagnosis based on concept drift. IEEE Fifth Ecuador Technical Chapters Meeting (ETCM), Cuenca, Ecuador. https://doi.org/10.1109/ETCM53643.2021.9590689

    Pozo, F., Vidal, Y., & Salgado, O. (2018). Wind turbine condition monitoring strategy through multiway PCA and multivariate inference. Energies, 11(4), Article 749. https://doi.org/10.3390/en11040749

    Pratama, M., Pedrycz, W., & Lughofer, E. (2018). Evolving ensemble fuzzy classifier. IEEE Transactions on Fuzzy Systems, 26(5), 2552–2567. https://doi.org/10.1109/TFUZZ.2018.2796099

    Puerto-Santana, C., Bielza, C., Diaz-Rozo, J., Ramirez-Gargallo, G., Mantovani, F., Virumbrales, G., Labarta, J., & Larranaga, P. (2022). Asymmetric HMMs for online ball-bearing health assessments. IEEE Internet of Things Journal, 9(20), 20160–20177. https://doi.org/10.1109/JIOT.2022.3173064

    Qu, F., Liu, J., Liu, X., & Jiang, L. (2021). A multi-fault detection method with improved triplet loss based on hard sample mining. IEEE Transactions on Sustainable Energy, 12(1), 127–137. https://doi.org/10.1109/TSTE.2020.2985217

    Quanlin, Z., Xiaoxiao, Z., & Chenggang, H. (2020, December 18-20). An automatic data cleaning and operating conditions classification method for wind turbines scada system. 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu, China. https://doi.org/10.1109/ICCWAMTIP51612.2020.9317436

    Renstrom, N., Bangalore, P., & Highcock, E. (2020). System-wide anomaly detection in wind turbines using deep autoencoders. Renewable Energy, 157, 647–659. https://doi.org/10.1016/j.renene.2020.04.148

    Rogers, T. J., Gardner, P., Dervilis, N., Worden, K., Maguire, A. E., Papatheou, E., & Cross, E. J. (2020). Probabilistic modelling of wind turbine power curves with application of heteroscedastic gaussian process regression. Renewable Energy, 148, 1124–1136. https://doi.org/10.1016/j.renene.2019.09.145

    Sousa, P. H. F. D., Nascimento, N. M. M., Filho, P. P. R., & Medeiros, C. M. S. D. (2018, July 8-13). Detection and classification of faults in induction generator applied into wind turbines through a machine learning approach. [Paper presentation]. International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil. https://doi.org/10.1109/IJCNN.2018.8489521

    Tang, H., Dai, H. L., & Du, Y. (2022). Bearing fault detection for doubly fed induction generator based on stator current. IEEE Transactions on Industrial Electronics, 69(5), 5267–5276. https://doi.org/10.1109/TIE.2021.3080216

    Tao, L., Siqi, Q., Zhang, Y., & Shi, H. (2019). Abnormal detection of wind turbine based on SCADA data mining. Mathematical Problems in Engineering, 2019(1), Article 5976843. https://doi.org/10.1155/2019/5976843

    Tong, R., Li, P., Gao, L., Lang, X., Miao, A., & Shen, X. (2022). A novel ellipsoidal semisupervised extreme learning machine algorithm and its application in wind turbine blade icing fault detection. IEEE Transactions on Instrumentation and Measurement, 71, Article 3523116. https://doi.org/10.1109/TIM.2022.3205920

    Trizoglou, P., Liu, X., & Lin, Z. (2021). Fault detection by an ensemble framework of extreme gradient boosting (XGBoost) in the operation of offshore wind turbines. Renewable Energy, 179, 945–962. https://doi.org/10.1016/j.renene.2021.07.085

    Turnbull, A., Carroll, J., & McDonald, A. (2022). A comparative analysis on the variability of temperature thresholds through time for wind turbine generators using normal behaviour modelling. Energies, 15(14), Article 5298. https://doi.org/10.3390/en15145298

    Tutiven, C., Vidal, Y., Acho, L., & Rodellar, J. (2018). Fault detection and isolation of pitch actuator faults in a floating wind turbine. IFAC-PapersOnLine, 51(24), 480–487. https://doi.org/10.1016/j.ifacol.2018.09.620

    Velandia-Cardenas, C., Vidal, Y., & Pozo, F. (2021). Wind turbine fault detection using highly imbalanced real SCADA data. Energies, 14(6), Article 1728. https://doi.org/10.3390/en14061728

    Velasquez, R. M. A., Tataje, F. A. O., & Ancaya-Martinez, M. D. C. E. (2021). Early detection of faults and stall effects associated to wind farms. Sustainable Energy Technologies and Assessments, 47, Article 101441. https://doi.org/10.1016/j.seta.2021.101441

    Wang, B., Sun, N., Wang, Z., & Han, G. (2021, November 26-28). An adaptive incremental learning algorithm based on shared nearest neighbors in fault detection. [Paper presentation] Computing, Communications and IoT Applications (ComComAp), Shenzhen, China. https://doi.org/10.1109/ComComAp53641.2021.9652989

    Wang, L., Jia, S., Yan, X., Ma, L., & Fang, J. (2022). A SCADA-data-driven condition monitoring method of wind turbine generators. IEEE Access, 10, 67532–67540. https://doi.org/10.1109/ACCESS.2022.3185259

    Wang, L., Zhang, Z., Long, H., Xu, J., & Liu, R. (2017). Wind turbine gearbox failure identification with deep neural networks. IEEE Transactions on Industrial Informatics, 13(3), 1360–1368. https://doi.org/10.1109/TII.2016.2607179

    Wang, L., Zhang, Z., Xu, J., & Liu, R. (2018). Wind turbine blade breakage monitoring with deep autoencoders. IEEE Transactions on Smart Grid, 9(4), 2824–2833. https://doi.org/10.1109/TSG.2016.2621135

    Wang, X., Zhao, Q., Yang, X., & Zeng, B. (2021). Analysis of long-term temperature monitoring of multiple wind turbines. Measurement & Control, 54(5–6), 627–640. https://doi.org/10.1177/00202940211013061

    Wang, Y., Ma, X., & Qian, P. (2018). Wind turbine fault detection and identification through PCA-based optimal variable selection. IEEE Transactions on Sustainable Energy, 9(4), 1627–1635. https://doi.org/10.1109/TSTE.2018.2801625

    Wei, L., Qian, Z., & Zareipour, H. (2020). Wind turbine pitch system condition monitoring and fault detection based on optimized relevance vector machine regression. IEEE Transactions on Sustainable Energy, 11(4), 2326–2336. https://doi.org/10.1109/TSTE.2019.2954834

    Xiao, X., Liu, J., Liu, D., Tang, Y., & Zhang, F. (2022). Condition monitoring of wind turbine main bearing based on multivariate time series forecasting. Energies, 15(5), Article 1951. https://doi.org/10.3390/en15051951 Xu, Q., Fan, Z., Jia, W., & Jiang, C. (2019). Quantile regression neural network-based fault detection scheme for wind turbines with application to monitoring a bearing. Wind Energy, 22(10), 1390–1401. https://doi.org/10.1002/we.2375

    Yang, L., Wang, L., Zheng, Z., & Zhang, Z. (2022). A continual learning-based framework for developing a single wind turbine cybertwin adaptively serving multiple modeling tasks. IEEE Transactions on Industrial Informatics, 18(7), 4912–4921. https://doi.org/10.1109/TII.2021.3130721

    Yang, L., & Zhang, Z. (2021a). A conditional convolutional autoencoder-based method for monitoring wind turbine blade breakages. IEEE Transactions on Industrial Informatics, 17(9), 6390–6398. https://doi.org/10.1109/TII.2020.3011441

    Yang, L., & Zhang, Z. (2021b). Wind turbine gearbox failure detection based on SCADA data: A deep learning-based approach. IEEE Transactions on Instrumentation and Measurement, 70, Article 3507911. https://doi.org/10.1109/TIM.2020.3045800

    Yang, Q., Liu, G., Bao, Y., & Chen, Q. (2022). Fault detection of wind turbine generator bearing using attention-based neural networks and voting-based strategy. IEEE/ASME Transactions on Mechatronics, 27(5), 3008–3018. https://doi.org/10.1109/TMECH.2021.3127213

    Yi, H., Jiang, Q., Yan, X., & Wang, B. (2021). Imbalanced classification based on minority clustering synthetic minority oversampling technique with wind turbine fault detection application. IEEE Transactions on Industrial Informatics, 17(9), 5867–5875. https://doi.org/10.1109/TII.2020.3046566

    Zenisek, J., Holzinger, F., & Affenzeller, M. (2019). Machine learning based concept drift detection for predictive maintenance. Computers & Industrial Engineering, 137, Article 106031. https://doi.org/10.1016/j.cie.2019.106031

    Zhang, D., Qian, L., Mao, B., Huang, C., Huang, B., & Si, Y. (2018). A data-driven design for fault detection of wind turbines using random forests and XGboost. IEEE Access, 6, 21020–21031. https://doi.org/10.1109/ACCESS.2018.2818678

    Zhang, K., Tang, B., Deng, L., & Yu, X. (2021). Fault detection of wind turbines by subspace reconstruction-based robust kernel principal component analysis. IEEE Transactions on Instrumentation and Measurement, 70, Article 3515711. https://doi.org/10.1109/TIM.2021.3075742

    Zhang, S., & Lang, Z. Q. (2020). SCADA-data-based wind turbine fault detection: A dynamic model sensor method. Control Engineering Practice, 102, Article 104546. https://doi.org/10.1016/j.conengprac.2020.104546

    Zhao, H., Chen, G., Hong, H., & Zhu, X. (2021). Remote structural health monitoring for industrial wind turbines using short-range doppler radar. IEEE Transactions on Instrumentation and Measurement, 70, Article 8002609. https://doi.org/10.1109/TIM.2021.3053959

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-5078-2024

Download Full Article PDF

Share this article

Related Articles