PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 32 (6) Oct. 2024 / JST-5019-2024

 

Assessment of Nitrate Reduction by Microbes in Artificial Groundwater Medium

Preeti Thakur and Pammi Gauba

Pertanika Journal of Science & Technology, Volume 32, Issue 6, October 2024

DOI: https://doi.org/10.47836/pjst.32.6.18

Keywords: Enterobacteriaceae, groundwater, microbe-microbe association, nitrate, remediation

Published on: 25 October 2024

There are significant reasons for nitrate contamination in groundwater (Delhi, India): sewage, runoff from landfill sites, nitrogenous chemical fertilisers, and pesticides from agricultural lands. The highest recorded concentration of nitrate in Delhi’s groundwater is reported to be 1500 mg/l. Consumption of high nitrate through water may pose serious health problems in humans, especially children (below five years). The study’s primary objective was to isolate and identify nitrate-remediating microbes from the nitrate-contaminated site Okhla Barrage, located on the Yamuna River in Delhi, India. A total of 11 different strains were isolated from this site. Among these four strains exhibited 40%–50% remediation efficiency at a nitrate concentration of 1000 mg/l. Molecular characterisation revealed that these four strains, Enterobacter aerogenes, E. coli K12, Klebsiella oxytoca and Lelliottia amnigena, belong to the Enterobacteriaceae family. This study assessed the nitrate remediation potential of isolated microbes in groundwater with 1000 and 1500 mg/l nitrate concentrations. By using a 2% inoculum, the microbes were incubated anaerobically at room temperature for ten days. Nitrate concentrations were monitored every 48 hours. Lelliottia, E. coli, and Enterobacter reduced nitrate (1500 mg/l) by approximately 42%, 24%, and 29%, respectively, while K. oxytoca showed minimal reduction. L. amnigena exhibited superior nitrate removal efficiency compared to other strains. According to the reported data, these strains are known to reduce nitrate concentrations of 620 mg/l. However, our findings demonstrate a remarkable nitrate remediation capacity of 1500 mg/l, showcasing a novel contribution to this study. Further detailed analysis for condition optimisation and association of microbe-microbe could be more helpful.

  • Addiscott, T. M., & Benjamin, N. (2004). Nitrate and human health. Soil Use and Management, 20(2), 98–104. https://doi.org/10.1079/sum2004256

  • Bing, X., & Hollocher, T. (1988). Reduction of nitrite to nitric oxide by Enteric bacteria. Biochemical and Biophysical Research Communications, 157(1), 106–108. https://doi.org/10.1016/j.bbrc.2019.05.052

  • Chouhan, S., Tuteja, U., & Flora, S. J. (2012). Isolation, identification and characterization of fluoride resistant bacteria: Possible role in bioremediation. Applied Biochemistry and Microbiology, 48(1), 51–58. https://doi.org/10.1134/S0003683812010036

  • DebRoy, S., Das, S., Ghosh, S., Banerjee, S., Chatterjee, D., Bhattacharjee, A., Mukherjee, I., & RayChaudhuri, S. (2012). Isolation of nitrate and phosphate removing bacteria from various environmental sites. OnLine Journal of Biological Sciences, 12(2), 62–71. https://doi.org/10.3844/ojbsci.2012.62.71

  • Elmidaoui, A., Sahli, M. A. M., Tahaikt, M., Chay, L., Taky, M., Elmghari, M., & Hafsi, M. (2003). Selective nitrate removal by coupling electrodialysis and a bioreactor. Desalination, 153(1–3), 389–397. https://doi.org/10.1016/S0011-9164(02)01133-5

  • Fazzolari, E., Mariotti, A., & Germon, J. C. (1990). Nitrate reduction to ammonia: A dissimilatory process in Enterobacter amnigenus. Canadian Journal of Microbiology, 36(11), 779–785. https://doi.org/10.1139/m90-134

  • Fewtrell, L. (2004). Drinking-water nitrate, methemoglobinemia, and global burden of disease: A discussion. Environmental Health Perspectives, 112(14), 1371–1374. https://doi.org/10.1289/ehp.7216

  • Hameed, A., Nazir, S., Rehman, J. U., Ahmad, N., Hussain, A., Alam, I., Nazir, A., & Tahir, M. B. (2021). Assessment of health hazards related to contaminations of fluorides, nitrates, and nitrites in drinking water of Vehari, Punjab, Pakistan. Human and Ecological Risk Assessment, 27(6), 1509–1522. https://doi.org/10.1080/10807039.2020.1858021

  • Jaeshin, K., & Benjamin, M. (2004). Modeling a novel ion exchange process for arsenic and nitrate removal. Water Research, 38(8), 2053–2062. https://doi.org/10.1016/j.watres.2004.01.012

  • Karunanidhi, D., Subramani, T., Roy, P. D., & Li, H. (2021). Impact of groundwater contamination on human health. Environmental Geochemistry and Health, 43(2), 643–647. https://doi.org/10.1007/s10653-021-00824-2

  • Kim, M., Jeong, S. Y., Yoon, S. J., Cho, S. J., Kim, Y. H., Kim, M. J., Ryu, E. Y., & Lee, S. J. (2008). Aerobic denitrification of Pseudomonas putida AD-21 at different C/N ratios. Journal of Bioscience and Bioengineering, 106(5), 498–502. https://doi.org/10.1263/jbb.106.498

  • Kim, Y. H., Hwang, E. D., Shin, W. S., Choi, J. H., Ha, T. W., & Choi, S. J. (2007). Treatments of stainless steel wastewater containing a high concentration of nitrate using reverse osmosis and nanomembranes. Desalination, 202(1–3), 286–292. https://doi.org/10.1016/j.desal.2005.12.066

  • Li, E., Deng, T., Yan, L., Zhou, J., He, Z., Deng, Y., & Xu, M. (2021). Elevated nitrate simplifies microbial community compositions and interactions in sulfide-rich river sediments. Science of the Total Environment, 750, Article 141513. https://doi.org/10.1016/j.scitotenv.2020.141513

  • Liao, M., Luo, Y., Xu, N., Xie, X., Gan, X., & Cao, D. (2022). Nitrogen removal and metabolic pathway of Enterobacter cloacae DK-6. Environmental Technology and Innovation, 28, Article 102630. https://doi.org/10.1016/j.eti.2022.102630

  • Lin, S. H., & Wu, C. L. (1996). Electrochemical removal of nitrite and ammonia for aquaculture. Water Research, 30(3), 715–721. https://doi.org/10.1016/0043-1354(95)00208-1

  • Lovley, D. R., & Phillips, E. J. P. (1988). Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Applied & Environmental Microbiology, 54(6), 1472–1480. https://doi.org/10.1128/aem.54.6

  • Madmanang, R., & Sriwiriyarat, T. (2019). Capacity enhancement of Enterobacter aerogenes for heterotrophic nitrification in integrated fixed film activated sludge (IFAS) wastewater treatment process. Engineering Journal, 23(1), 1–12. https://doi.org/10.4186/ej.2019.23.1.1

  • Maia, M. P., Rodrigues, M. A., & Passos, F. B. (2007). Nitrate catalytic reduction in water using niobia supported palladium-copper catalysts. Catalysis Today, 123(1–4), 171–176. https://doi.org/10.1016/j.cattod.2007.01.051

  • Majumdar, D. (2003). The blue baby syndrome: Nitrate poisoning in humans. Resonance, 8(10), 20-30. https://doi.org/10.1007/BF02840703

  • Malberg, J. W., Savage, E. P., & Osteryoung, J. (1978). Nitrates in drinking water and the early onset of hypertension. Environmental Pollution, 15(2), 155–160. https://doi.org/10.1016/0013-9327(78)90103-9

  • Matos, C. T., Fortunato, R., Velizarov, S., Reis, M. A. M., & Crespo, J. G. (2006). Optimisation of the removal of toxic mono-valent anions from water supplies in the ion exchange membrane bioreactor. Desalination, 199(1–3), 322–324. https://doi.org/10.1016/j.desal.2006.03.076

  • Morris, A. L., Hamlin, H. J., Francis-Floyd, R., Sheppard, B. J., & Guillette, L. J. (2011). Nitrate-induced goiter in captive whitespotted bamboo sharks Chiloscyllium plagiosum. Journal of Aquatic Animal Health, 23(2), 92–99. https://doi.org/10.1080/08997659.2011.574079

  • Pan, D., Watson, R., Wang, D., Tan, Z. H., Snow, D. D., & Weber, K. A. (2014). Correlation between viral production and carbon mineralization under nitrate-reducing conditions in aquifer sediment. ISME Journal, 8(8), 1691–1703. https://doi.org/10.1038/ismej.2014.38

  • Qin, S., Zhang, Z., Yu, L., Yuan, H., Clough, T. J., Wrage-Mönnig, N., Luo, J., & Zhou, S. (2017). Enhancement of subsoil denitrification using an electrode as an electron donor. Soil Biology and Biochemistry, 115, 511–515. https://doi.org/10.1016/j.soilbio.2017.09.020

  • Raja, V., & Neelakantan, M. A. (2021). Evaluation of groundwater quality with health risk assessment of fluoride and nitrate in Virudhunagar district, Tamil Nadu, India. Arabian Journal of Geosciences, 14, Article 52. https://doi.org/10.1007/s12517-020-06385-5

  • Rajakumar, S., Ayyasamy, P. M., Shanthi, K., Thavamani, P., Velmurugan, P., Song, Y. C., & Lakshmanaperumalsamy, P. (2008). Nitrate removal efficiency of bacterial consortium (Pseudomonas sp. KW1 and Bacillus sp. YW4) in synthetic nitrate-rich water. Journal of Hazardous Materials, 157(2–3), 553–563. https://doi.org/10.1016/j.jhazmat.2008.01.020

  • Rajta, A., Bhatia, R., Setia, H., & Pathania, P. (2020). Role of heterotrophic aerobic denitrifying bacteria in nitrate removal from wastewater. Journal of Applied Microbiology, 128(5), 1261–1278. https://doi.org/10.1111/jam.14476

  • Reddy, A. G. S. (2023). A review on violation of drinking water specifications in water supply and research publications. Environment, Development and Sustainability, 25(2), 1084–1100. https://doi.org/10.1007/s10668-021-02038-z

  • Reddy, K. J., & Lin, J. (2000). Nitrate removal from groundwater using catalytic reduction. Water Research, 34(3), 995–1001. https://doi.org/10.1016/S0043-1354(99)00227-4

  • Riet, J. V. T., & Planta, R. J. (1975). Purification, structure and properties of the respiratory nitrate reductase of Klebsiella aerogenes. Biochimica et Biophysica Acta (BBA)-Protein Structure, 379(1), 81-94. https://doi.org/10.1016/0005-2795(75)90010-0

  • Sahli, M. A. M., Tahaikt, M., Achary, I., Taky, M., Elhanouni, F., Hafsi, M., Elmghari, M., & Elmidaoui, A. (2006). Technical optimization of nitrate removal for groundwater by ED using a pilot plant. Desalination, 189(1-3 SPEC. ISS.), 200–208. https://doi.org/10.1016/j.desal.2005.06.025

  • Schoeman, J. J., & Steyn, A. (2003). Nitrate removal with reverse osmosis in a rural area in South Africa. Desalination, 155(1), 15–26. https://doi.org/10.1016/S0011-9164(03)00235-2

  • Sikdar, P. K. (2018). Groundwater development and management: Issues and challenges in South Asia. Springer. https://doi.org/10.1007/978-3-319-75115-3

  • Singh, B., & Craswell, E. (2021). Fertilizers and nitrate pollution of surface and ground water: An increasingly pervasive global problem. SN Applied Sciences, 3(4), 1–24. https://doi.org/10.1007/s42452-021-04521-8

  • Srivastava, D. A., Yadav, D., & Gaur, B. (2015). Groundwater quality assessment around Gazipur Landfill site, Delhi. Science & Technology, 1(4), 149–156.

  • Tariqi, A. Q., & Naughton, C. C. (2021). Water, health, and environmental justice in California: Geospatial analysis of nitrate contamination and thyroid cancer. Environmental Engineering Science, 38(5), 377–388. https://doi.org/10.1089/ees.2020.0315

  • Thakur, P., & Gauba, P. (2021). Tolerance and remediation potential of water microbes against nitrate. International Journal of Current Research and Review, 13(19), 58–64. https://doi.org/10.31782/ijcrr.2021.131908

  • Thakur, P., & Gauba, P. (2023). Identification and examination of nitrogen metabolic genes in Lelliottia amnigena PTJIIT1005 for their ability to perform nitrate remediation. BMC Genomics, 24(1), 1–11. https://doi.org/10.1186/s12864-023-09207-6

  • Thakur, P., & Gauba, P. (2024). Expression analysis of nitrogen metabolism genes in Lelliottia amnigena PTJIIT1005, comparison with Escherichia coli K12 and validation of nitrogen metabolism genes. In Biochemical Genetics (pp. 1-31). Springer. https://doi.org/10.1007/s10528-024-10677-w

  • Tirkey, P., Bhattacharya, T., Chakraborty, S., & Baraik, S. (2017). Assessment of groundwater quality and associated health risks: A case study of Ranchi city, Jharkhand, India. Groundwater for Sustainable Development, 5, 85–100. https://doi.org/10.1016/j.gsd.2017.05.002

  • Tyagi, S., Sharma, B., Singh, P., & Dobhal, R. (2020). Water quality assessment in terms of water quality index. American Journal of Water Resources, 1(3), 34–38. https://doi.org/10.12691/ajwr-1-3-3

  • Ward, M. H., Jones, R. R., Brender, J. D., de Kok, T. M., Weyer, P. J., Nolan, B. T., Villanueva, C. M., & van Breda, S. G. (2018). Drinking water nitrate and human health: An updated review. International Journal of Environmental Research and Public Health, 15(7), 1–31. https://doi.org/10.3390/ijerph15071557

  • Yang, T., Yang, Q., Shi, Y., Xin, Y., Zhang, L., Gu, Z., & Shi, G. (2021). Insight into the denitrification mechanism of Bacillus subtilis JD-014 and its application potential in bioremediation of nitrogen wastewater. Process Biochemistry, 103, 78–86. https://doi.org/10.1016/j.procbio.2021.02.007

  • Zhang, W., Ruan, X., Bai, Y., & Yin, L. (2018). The characteristics and performance of sustainable-releasing compound carbon source material applied on groundwater nitrate in-situ remediation. Chemosphere, 205, 635–642. https://doi.org/10.1016/j.chemosphere.2018.04.133

  • Zhao, B., Sun, Z., & Liu, Y. (2022). An overview of in-situ remediation for nitrate in groundwater. Science of the Total Environment, 804, 1–14. https://doi.org/10.1016/j.scitotenv.2021.149981

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-5019-2024

Download Full Article PDF

Share this article

Related Articles