PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 33 (1) Jan. 2025 / JST-5003-2024

 

Spatial Dynamics of Macrobenthos Assemblages in Different Breakwater Systems in Kuala Nerus, Terengganu, Malaysia

Nur Fazne Ibrahim, Muzzalifah Abd Hamid, Mohd Fadzil Mohd Akhir, Wan Izatul Asma Wan Talaat, Ong Meng Chuan and Izwandy Idris

Pertanika Journal of Science & Technology, Volume 33, Issue 1, January 2025

DOI: https://doi.org/10.47836/pjst.33.1.04

Keywords: Bathymetry, breakwater system, groyne, Kuala Nerus, macrobenthos

Published on: 23 January 2025

The Sultan Mahmud Airport runway extension in 2008 resulted in coastal erosion along the Kuala Nerus shorelines. In response, different breakwater systems were constructed to mitigate erosion. Despite previous reports highlighting the effects of breakwaters on marine organisms, the local impact remains uncertain. Therefore, this study investigates the spatial impact of different breakwater systems on macrobenthos composition in the Kuala Nerus coastal area. Samplings were conducted at 12 substations across five main stations, covering sheltered and exposed areas. Results revealed 27,137 macrobenthos individuals, with groyne exhibiting the highest macrobenthos composition (8448.79 ± 2813.73 ind./m2). Gastropoda dominated (4971.01–41608.70 ind./m2), followed by Bivalvia (2927.54–12391.20 ind./m2) and Polychaeta (1000.00–4956.52 ind./m2). Macrobenthos compositions in the sheltered and exposed stations differed significantly (p < 0.05). The coastal area is predominantly sandy (30.68%–77.32%) with relatively stable total organic matter (TOM) and heavy metal concentrations. Current speed and significant wave height (Hs) are lower in sheltered stations, while bathymetry is deeper in exposed stations (up to 8 m). The macrobenthos assemblages are influenced by soft-bottom characteristics and food availability, with the hydrodynamic stress from the breakwater system governing these two primary factors.

  • Abele, L. G., & Kim, W. (1986). An illustrated guide to The Marine Decapod Crustaceans of Florida. State of Florida Department of Environmental Regulation.

    Ahmad, M. F., Subiyanto, Yaacob, R., Mamat, M., Muslim, A. M., & Husain, M. L. (2014). Coastline changes in vicinity of runway platform of Sultan Mahmud Airport, Kuala Terengganu: Comparative analysis of one-line model versus satellite data. Journal of Applied Sciences, 14(19), 2234–2245. https://doi.org/10.3923/jas.2014.2234.2245

    Airoldi, L., & Bulleri, F. (2011). Anthropogenic disturbance can determine the magnitude of opportunistic species responses on marine urban infrastructures. PlosOne, 6(8), Article e22985. https://doi.org/10.1371/journal.pone.0022985

    Alipoor, V., Rahimibashar, M. R., & Aliev, A. (2011). Temporal and spatial variation of macrozoobenthos in the Chamkhale Estuary (South Caspian Sea ). Middle East Journal of Scientific Research, 10(5), 654-658.

    Alongi, D. M. (1989). Ecology of tropical soft-bottom benthos: A review with emphasis on emerging concepts. Revista de Biología Tropical, 37(1), 85–100.

    Amfa, M. O., Abdurrahman, M. I., Hidayat, S. A., Situmeang, G. L., Farwati, N., & Yudha, F. K. (2020). Macrobenthos community structure in coral reef ecosystem around Pramuka Island, Jakarta. IOP Conference Series: Earth and Environmental Science, 420(1), Article 012003. https://doi.org/10.1088/1755-1315/420/1/012003

    Araujo-Leyva, O., Rodríguez-Villanueva, L. V., & Macías-Zamora, J. V. (2020). Biodiversity of polychaetous annelids in Bahía de Todos Santos, Baja California México. Zoosymposia, 19, 51–71. https://doi.org/10.11646/zoosymposia.19.1.10

    Ariffin, E. H., Mathew, M. J., Yaacob, R., Akhir, M. F., Shaari, H., Zulfakar, M. S. Z., Sedrati, M., & Awang, N. A. (2018). Beach morphodynamic classification in different monsoon seasons at Terengganu beaches, Malaysia. Journal of Sustainability Science and Management, 13(5), 65–74.

    Ariffin, E. H., Zulfakar, M. S. Z., Redzuan, N. S., Mathew, M. J., Akhir, M. F., Baharim, N. B., Awang, N. A., & Mokhtar, N. A. (2020). Evaluating the effects of beach nourishment on littoral morphodynamics at Kuala Nerus, Terengganu (Malaysia). Journal of Sustainability Science and Management, 15(5), 29–42. http://doi.org/10.46754/jssm.2020.07.005

    Atilla, N., Fleeger, J. W., & Finelli, C. M. (2005). Effects of habitat complexity and hydrodynamics on the abundance and diversity of small invertebrates colonizing artificial substrates. Journal of Marine Research, 63(6), 1151–1172.

    Bachok, Z., Meziane, T., Mfilinge, P. L., & Tsuchiya, M. (2009). Fatty acid markers as an indicator for temporal changes in food sources of the bivalve Quidnipagus palatum. Aquatic Ecosystem Health and Management, 12(4), 390–400. https://doi.org/10.1080/14634980903347589

    Becchi, C., Ortolani, I., Muir, A., & Cannicci, S. (2014). The effect of breakwaters on the structure of marine soft-bottom assemblages: A case study from a North-Western Mediterranean basin. Marine Pollution Bulletin, 87(1-2), 131–139. https://doi.org/10.1016/j.marpolbul.2014.08.002

    Bensharada, M., Telford, R., Stern, B., & Gaffney, V. (2022). Loss on ignition vs. thermogravimetric analysis: A comparative study to determine organic matter and carbonate content in sediments. Journal of Paleolimnology, 67, 191–197. https://doi.org/10.1007/s10933-021-00209-6

    Bertasi, F., Colangelo, M. A., Abbiati, M., & Ceccherelli, V. U. (2007). Effects of an artificial protection structure on the sandy shore macrofaunal community: The special case of Lido di Dante (Northern Adriatic Sea). Hydrobiologia, 586(1), 277–290. https://doi.org/10.1007/s10750-007-0701-y

    Bertasi, F., Colangelo, M. A., Colosio, F., Gregorio, G., Abbiati, M., & Ceccherelli, V. U. (2009). Comparing efficacy of different taxonomic resolutions and surrogates in detecting changes in soft bottom assemblages due to coastal defence structures. Marine Pollution Bulletin, 58(5), 686–694. https://doi.org/10.1016/j.marpolbul.2009.01.003

    Bray, J. R., & Curtis, J. T. (1957). An ordination of the upland forest communities of southern Wisconsin. Ecological monographs, 27(4), 326–349. https://doi.org/10.2307/1942268

    Carugati, L., Martire, M. L., Gambi, C., & Danovaro, R. (2018). Impact of breakwater relocation on benthic biodiversity associated with seagrass meadows of northern Adriatic Sea. Rendiconti Lincei, 29(3), 571–581. https://doi.org/10.1007/s12210-018-0720-9

    Chowdhury, A. J. K., John, A., Aqilah, N. S., Abdullah, R., Salihah, N. T., Basir, K. H., & Marsal, C. J. (2024). Macrobenthic community towards sustainable aquatic ecosystem: A systematic review along the coastal waters of Malaysia. Geology, Ecology, and Landscapes, 8(1), 57–70. https://doi.org/10.1080/24749508.2022.2095088

    Costas, A. N. (2016). Ecology and bioindicator potential of benthic macroinvertebrates in a Mediterranean salt wedge estuary: The Ebro River case. [Doctoral dissertation, Universitat de Barcelona]. Universitat de Barcelona. https://diposit.ub.edu/dspace/handle/2445/99343

    Daryabor, F., Ooi, S. H., Samah, A. A., & Akbari, A. (2016). Dynamics of the water circulations in the Southern South China Sea and its seasonal transports. PlosOne, 11(7), Article e0158415. https://doi.org/10.1371/journal.pone.0158415

    Day, J. H. (1967). A monograph on the Polychaeta of Southern Africa. British Museum of Natural History.

    Desrosiers, M., Usseglio-Polatera, P., Archaimbault, V., Larras, F., Méthot, G., & Pinel-Alloul, B. (2019). Assessing anthropogenic pressure in the St. Lawrence River using traits of benthic macroinvertebrates. Science of the Total Environment, 649, 233–246. https://doi.org/10.1016/j.scitotenv.2018.08.267

    Dittmann, S. (2002). Benthic fauna in tropical tidal flats - A comparative perspective. Wetlands Ecology and Management, 10(3), 189–195. https://doi.org/10.1023/A:1020119512225

    Ehrnsten, E., Savchuk, O. P., & Gustafsson, B. G. (2022). Modelling the effects of benthic fauna on carbon, nitrogen and phosphorus dynamics in the Baltic Sea. Biogeosciences, 19(13), 3337–3367. https://doi.org/10.5194/bg-19-3337-2022

    Ellers, O. (2021). Passive orientation, hydrodynamics, acoustics and behaviour in swash-riding clams and other sandy beach invertebrates. In R. W. Blake & P. Domenici (Eds.), Biomechanics in Animal Behaviour (pp. 177–194). Garland Science.

    Fitri, A., Hashim, H., Abolfathi, S., & Maulud, K. N. A. (2019). Dynamics of sediment transport and erosion-deposition patterns in the locality of a detached low-crested breakwater on a cohesive coast. Water, 11(8), Article 1721. https://doi.org/10.3390/w11081721

    Foulquier, C., Baills, J., Arraud, A., D’Amico, F., Blanchet, H., Rihouey, D., & Bru, N. (2020). Hydrodynamic conditions effects on soft-bottom subtidal nearshore benthic community structure and distribution. Journal of Marine Sciences, 2020(1), Article 4674580. https://doi.org/10.1155/2020/4674580

    Fortunato, H. (2015). Mollusks: Tools in environmental and climate research. American Malacological Bulletin, 33(2), 310–324. https://doi.org/10.4003/006.033.0208

    Galani, K. A., Dimou, I. D., & Dimas, A. A. (2019). Wave height and set up in the sheltered area of a segmented, detached, rubble-mound, zero-freeboard breakwater on a steep beach. Ocean Engineering, 186, Article 106124. https://doi.org/10.1016/j.oceaneng.2019.106124

    Gibson, R. K., & Knight-Jones, E. (2017). Flatworms and ribbon worms. In P. J. Hayward & J. S. Ryland (Eds.), Handbook of the Marine Fauna of North-West Europe (pp. 133–164). Oxford University Press.

    Holzhauer, H., Borsje, B. W., Dalfsen, J. A. V., Wijnberg, K. M., Hulscher, S. J. M. H., & Herman, P. M. J. (2020). Benthic species distribution linked to morphological features of a barred coast. Journal of Marine Science and Engineering, 8(1), Article 16. https://doi.org/10.3390/jmse8010016

    Hope, J. A., Hewitt, J., Pilditch, C. A., Savage, C., & Thrush, S. F. (2020). Effect of nutrient enrichment and turbidity on interactions between microphytobenthos and a key bivalve: Implications for Higher trophic levels. Frontiers in Marine Science, 7(8), Article 695. https://doi.org/10.3389/fmars.2020.00695

    Huang, Y., Li, Y., Chen, Q., Huang, Y., Tian, J., Cai, M., Huang, Y., Jiao, Y., Yang, Y., Du, X., Liu, Z., & Zhao, Y. (2021). Effects of reclamation methods and habitats on macrobenthic communities and ecological health in estuarine coastal wetlands. Marine Pollution Bulletin, 168(5), Article 112420. https://doi.org/10.1016/j.marpolbul.2021.112420

    Ibrahim, N. F., Hamid, M. A., Akhir, M. F. M., Ong, M. C., Talaat, W. I. A. W., & Idris, I. (2023). Seasonal benthic species composition linked to coastal defense structures (CDS) in Kuala Nerus, Terengganu, Malaysia. PeerJ, 11, Article e16203. https://doi.org/10.7717/peerj.16203

    Jahangirzadeh, A., Akib, S., Kamali, B., Shamsudin, S., & Kimiaei, K. (2012). Effects of construction of coastal structure on ecosystem. World Academy of Science, Engineering and Technology, 65, 663–674.

    Jeans, G., Harrington-Missin, L., Calverley, M., Maisondieu, C., Frelin, C., & Quiniou, V. (2013). Deepwater current profile data sources for riser engineering offshore West Africa. Proceedings Series International Conference on Offshore and Arctic Engineering, 55393, Article V005T06A038. https://doi.org/10.1115/OMAE2013-10540

    Kaullysing, D., Taleb-Hossenkhan, N., Kulkarni, B. G., & Bhagooli, R. (2017). A comparison of the density and diversity of intertidal benthic molluscs at a sheltered and an exposed tropical coast around Mauritius Island. Western Indian Ocean Journal of Marine Science, Special Issue 1, 31–41.

    Keller, W. J., & Pomory, C. M. (2008). Effects of porous mesh groynes on macroinvertebrates of a sandy beach, Santa Rosa Island, Florida, USA. Gulf of Mexico Science, 26(1), 36–45. https://doi.org/10.18785/goms.2601.04

    Kéfi, S., Berlow, E. L., Wieters, E. A., Joppa, L. N., Wood, S. A., Brose, U., & Navarrete, S. A. (2015). Network structure beyond food webs: Mapping non-trophic and trophic interactions on Chilean rocky shores. Ecology, 96(1), 291–303. https://doi.org/10.1890/13-1424.1

    Kim, S. L., Kang, S. M., Lee, H. G., Han, G. H., & Yu, O. H. (2023). Species diversity and community structure of macrobenthos in the Ulleung Basin, East Sea, Republic of Korea. Journal of Marine Science and Engineering, 11(1), Article 92. https://doi.org/10.3390/jmse11010092

    López, G. I. (2017). Grain size analysis. In C. W. Finkl (Ed.), Encyclopedia of Earth Sciences Series (pp. 341–348). Springer. https://doi.org/10.1007/978-1-4020-4409-0_18

    Masucci, G. D., Acierno, A., & Reimer, J. D. (2020). Eroding diversity away: Impacts of a tetrapod breakwater on a subtropical coral reef. Aquatic Conservation: Marine and Freshwater Ecosystems, 30(2), 290–302. https://doi.org/10.1002/aqc.3249

    Matthiessen, P., & Law, R. J. (2002). Contaminants and their effects on estuarine and coastal organisms in the United Kingdom in the late twentieth century. Environmental Pollution, 120(3), 739–757. https://doi.org/10.1016/S0269-7491(02)00175-6

    Merz, R. A. (2015). Textures and traction: How tube-dwelling polychaetes get a leg up. Invertebrate Biology, 134(1), 61–71. https://doi.org/10.1111/ivb.12079

    Moreira, J., Chapman, M. G., & Underwood, A. J. (2006). Seawalls do not sustain viable populations of limpets. Marine Ecology Progress Series, 322, 179–188. https://doi.org/10.3354/meps322179

    Moreira, J., Chapman, M. G., & Underwood, A. J. (2007). Maintenance of chitons on seawalls using crevices on sandstone blocks as habitat in Sydney Harbour, Australia. Journal of Experimental Marine Biology and Ecology, 347(1–2), 134–143. https://doi.org/10.1016/j.jembe.2007.04.001

    Munari, C., Corbau, C., Simeoni, U., & Mistri, M. (2011). Coastal defence through low crested breakwater structures: Jumping out of the frying pan into the fire? Marine Pollution Bulletin, 62(8), 1641–1651. https://doi.org/10.1016/j.marpolbul.2011.06.012

    Ong, M. C., Fok, F. M., Sultan, K., & Joseph, B. (2016). Distribution of heavy metals and rare earth elements in the surface sediments of Penang River Estuary, Malaysia. Open Journal of Marine Science, 6(1), 79–92.

    Orand, M. O., & Fisher, G. R. (2021). Impact of seawall type on mollusc size and diversity in South Water Caye Belize: A Case Study. Ursidae: The Undergraduate Research Journal at the University of Northern Colorado, 10(1), Article 4.

    Qiu, D., Lu, F., Yan, J., Luo, M., Ning, Z., Cai, Y., & Cui, B. (2018). Impact of ecosystem engineers on intertidal edaphic environment in coastal wetland: Mechanisms involved. Journal of Beijing Normal University (Natural Science), 54(1), 9–16. https://doi.org/10.16360/j.cnki.jbnuns.2018.01.002

    Raji, Z., Karim, A., Karam, A., & Khalloufi, S. (2023). Adsorption of heavy metals: Mechanisms, kinetics, and applications of various adsorbents in wastewater remediation-A review. Waste, 1(3), 775–805. https://doi.org/10.3390/waste1030046

    Rivera-Ingraham, G. A., Espinosa, F., & Garcia-Gomez, J. C. (2011). Environmentally mediated sex change in the endangered limpet Patella ferruginea (Gastropoda Patellidae). Journal of Molluscan Studies, 77(3), 226–231. https://doi.org/10.1093/mollus/eyr007

    Schoonees, T., Gijón Mancheño, A., Scheres, B., Bouma, T. J., Silva, R., Schlurmann, T., & Schüttrumpf, H. (2019). Hard structures for coastal protection, towards greener designs. Estuaries and Coasts, 42(7), 1709–1729. https://doi.org/10.1007/s12237-019-00551-z

    Sczcepanek, M., Silberberger, M. J., Koziorowska-Makuch, K.., Nobili, E., & Kedra, M. (2021). The response of coastal macrobenthic food-web structure to seasonal and regional variability in organic matter properties. Ecological indicators, 132, Article 10836. https://doi.org/10.1016/j.ecolind.2021.108326

    Sierra, J. P., & Casas-Prat, M. (2014). Analysis of potential impacts on coastal areas due to changes in wave conditions. Climatic change, 124, 861–876. https://doi.org/10.1007/s10584-014-1120-5

    Siegel, F. R. (2020). Structures that protect coastal populations, assets, and GDPs: Sea Dikes, breakwaters, seawalls. In Siegel, F. R. (Ed.), Adaptations of Coastal Cities to Global Warming, Sea Level Rise, Climate Change and Endemic Hazards (pp. 11–25). Springer.

    Stender, Y., Foley, M., Rodgers, K., Jokiel, P., & Singh, A. (2021). Evaluating the feasibility and advantage of a multi-purpose submerged breakwater for harbor protection and benthic habitat enhancement at Kahului Commercial Harbor, Hawai‘i: Case study. SN Applied Sciences, 3(2), Article 167. https://doi.org/10.1007/s42452-020-04072-4

    Strain, E. M. A., Olabarria, C., Mayer-Pinto, M., Cumbo, V., Morris, R. L., Bugnot, A. B., Dafforn, K. A., Heery, A., Firth, L. B., Brooks, P. R., & Bishop, M. J. (2018). Eco-engineering urban infrastructure for marine and coastal biodiversity: Which interventions have the greatest ecological benefit? Journal of Applied Ecology, 55(1), 426–441. https://doi.org/10.1111/1365-2664.12961

    Tao, J., & Han, G. (2002). Effects of water wave motion on pollutant transport in shallow coastal water. Science in China Series: Technological Science, 45, 593–605. https://doi.org/10.1360/02ye9068

    Turner, J. A., Thomson, D. P., Cresswell, A. K., Trapon, M., & Babcock, R. C. (2018). Depth-related patterns in coral recruitment across a shallow to mesophotic gradient. Coral Reefs, 37(3), 711–722. https://doi.org/10.1007/s00338-018-1696-8

    Underwood, A. J., & Chapman, M. G. (2013). Design and analysis in benthic surveys in environmental sampling. In A. Eleftheriou (Ed.), Methods for the Study of Marine Benthos (pp. 1–40). Wiley. https://doi.org/10.1002/9781118542392.ch1

    Valentich-Scott, P. (2003). A taxonomic, distributional and bibliographic checklist of Hong Kong marine bivalve molluscs and research published on them from 1971-2000. In B. Morton (Ed.), Perspectives on Marine Environment Change in Hong Kong and Southern China, 1977 – 2001 (pp. 259-310). Hong Kong University Press.

    Vinn, O. (2021). Biomineralization in polychaetes annelids: A review. Minerals, 11(10), Article 1151. https://doi.org/10.3390/min11101151

    Vizakat, L., Harkantra, S. N., & Parulekar, A. H. (1991). Population ecology and community structure of sub-tidal soft-sediment dwelling macro-invertebrates of Konkan, West coast of India. Indian Journal of Marine Sciences, 20, 40–42.

    Wahid, M. I. M. A. (2022, May 31). Kuala Nerus a sustainable town, full of attractions. Berita Harian. https://www.umt.edu.my/highlight2022/kuala-nerus-a-sustainable-town-full-of-attractions/.

    Walker, S. J., Schlacher, T. A., & Thompson, L. M. C. (2008). Habitat modification in a dynamic environment: The influence of a small artificial groyne on macrofaunal assemblages of a sandy beach. Estuarine, Coastal and Shelf Science, 79(1), 24–34. https://doi.org/10.1016/j.ecss.2008.03.011

    Wiesebron, L. E., Steiner, N., Morys, C., Ysebaert, T., & Bouma, T. J. (2021). Sediment bulk density effects on benthic macrofauna burrowing and bioturbation behavior. Frontiers in Marine Science, 8, Article 707785. https://doi.org/10.3389/fmars.2021.707785

    Yao, Q., Wang, X., Jian, H., Chen, H., & Yu, Z. (2015). Characterization of particle size fraction associated with heavy metals in suspended sediments of the Yellow River. International Journal of Environmental Research and Public Health, 12(6), 6725–6744. https://doi.org/10.3390/ijerph120606725

    Yunus, K., Zuraidah, M. A., & John, A. (2020). A review on the accumulation of heavy metals in coastal sediment of Peninsular Malaysia. Ecofeminism and Climate Change, 1(1), 21–35.

    Zanuttigh, B., Martinelli, L., Lamberti, A., Moschella, P., Hawkins, S., Marzetti, S., & Ceccherelli, V. U. (2005). Environmental design of coastal defence in Lido di Dante, Italy. Coastal Engineering, 52(10–11), 1089–1125. https://doi.org/10.1016/j.coastaleng.2005.09.015

    Zulfakar, M. S. Z., Akhir, M. F., Ariffin, E. H., Awang, N. A., Yaacob, M. A. M., Chong, W. S., & Muslim, A. M. (2020). The effect of coastal protections on the shoreline evolution at Kuala Nerus, Terengganu (Malaysia). Journal of Sustainability Science and Management, 15(3), 71–85.