e-ISSN 2231-8526
ISSN 0128-7680
Wan Yusrizal Wan Yusoff, Mohammad Lutfi Othman, Mohd Zainal Abidin Ab Kadir, Noor Izzri Abdul Wahab and Aidil Azwin Zainul Abidin
Pertanika Journal of Science & Technology, Volume 33, Issue 1, January 2025
DOI: https://doi.org/10.47836/pjst.33.1.03
Keywords: Capacitor banks, distributed energy resources, distribution networks, electric vehicles load, expansion planning
Published on: 23 January 2025
Distribution Networks Expansion Planning (DNEP) is very complex and involves improving the system to meet the increasing demand using the most cost-effective strategy. Among the planned choices are the extension of substations, upgrade of distribution feeders, installation of additional Distributed Energy Resources (DERs), installation of Capacitor Banks (CBs) and many other methods. Distribution planners in contemporary networks must have faith in the reversibility of investments where Renewable Energy Resources (RERs) inject clean and cost-effective for DNEP to meet growing demand and environmental requirements. The comprehensive review of DNEP carried out in this paper covers all possible objective functions and problem constraints. With the rise of electric vehicles (EVs), there is a growing need to assess the impact of EV charging on distribution networks. Understanding how EV loads affect the network helps plan future expansions to efficiently accommodate the charging infrastructure. Integrating DERs, such as solar panels, wind turbines, and energy storage systems, is changing how electricity is generated, distributed, and consumed. Assessing the integration of DERs into distribution networks is crucial for optimal network planning and operation. In addition, CBs are essential for power factor correction and voltage regulation in distribution networks. Including CBs in expansion planning helps improve network efficiency, reliability, and overall power quality. By analyzing the impact of EV loads, DERs, and CBs in DNEP, researchers and planners can develop more accurate models and strategies for designing sustainable and resilient power systems to efficiently meet the growing energy demands.
Abapour, S., Zare, K., & Mohammadi‐Ivatloo, B. (2015). Dynamic planning of distributed generation units in active distribution network. IET Generation, Transmission & Distribution, 9(12), 1455-1463. https://doi.org/10.1049/iet-gtd.2014.1143
Aghaei, J., Muttaqi, K. M., Azizivahed, A., & Gitizadeh, M. (2014). Distribution expansion planning considering reliability and security of energy using modified PSO (Particle swarm optimization) algorithm. Energy, 65, 398-411. https://doi.org/10.1016/j.energy.2013.10.082
Ahmed, E. M., Rakočević, S., Ćalasan, M., Ali, Z. M., Hasanien, H. M., Turky, R. A., & Aleem, S. H. A. (2022). BONMIN solver-based coordination of distributed FACTS compensators and distributed generation units in modern distribution networks. Ain Shams Engineering Journal, 13(4), Article 101664. https://doi.org/10.1016/j.asej.2021.101664
Al-Kaabi, S. S., Zeineldin, H. H., & Khadkikar, V. (2013). Planning active distribution networks considering multi-DG configurations. IEEE Transactions on Power Systems, 29(2), 785-793. https://doi.org/ 10.1109/TPWRS.2013.2282343
Ameli, A., Ahmadifar, A., Shariatkhah, M. H., Vakilian, M., & Haghifam, M. R. (2017). A dynamic method for feeder reconfiguration and capacitor switching in smart distribution systems. International Journal of Electrical Power & Energy Systems, 85, 200-211. https://doi.org/10.1016/j.ijepes.2016.09.008
Amjady, N., Attarha, A., Dehghan, S., & Conejo, A. J. (2017). Adaptive robust expansion planning for a distribution network with DERs. IEEE Transactions on Power Systems, 33(2), 1698-1715. https://doi.org/10.1109/TPWRS.2017.2741443
Arasteh, H., Sepasian, M. S., Vahidinasab, V., & Siano, P. (2016). SoS-based multiobjective distribution system expansion planning. Electric Power Systems Research, 141, 392-406. https://doi.org/10.1016/j.epsr.2016.08.016
Ayalew, M., Khan, B., Giday, I., Mahela, O. P., Khosravy, M., Gupta, N., & Senjyu, T. (2022). Integration of renewable based distributed generation for distribution network expansion planning. Energies, 15(4), Article 1378. https://doi.org/10.3390/en15041378
Ayoubi, M., Hooshmand, R. A., & Esfahani, M. T. (2017). Optimal capacitor placement in distorted distribution systems considering resonance constraint using multi‐swarm particle swarm optimisation algorithm. IET Generation, Transmission & Distribution, 11(13), 3210-3221. https://doi.org/10.1049/iet-gtd.2016.0989
Bagheri, A., Monsef, H., & Lesani, H. (2015). Integrated distribution network expansion planning incorporating distributed generation considering uncertainties, reliability, and operational conditions. International Journal of Electrical Power & Energy Systems, 73, 56-70. https://doi.org/10.1016/j.ijepes.2015.03.010
Borozan, S., Giannelos, S., & Strbac, G. (2022). Strategic network expansion planning with electric vehicle smart charging concepts as investment options. Advances in Applied Energy, 5, Article 100077. https://doi.org/10.1016/j.adapen.2021.100077
Carnegie, R., Gotham, D., Nderitu, D., & Preckel, P. V. (2013). Utility Scale Energy Storage Systems. Purdue University
Cogeneration technologies. (2022). Retrieved from Combined heat and power. Cogeneration technologies. https://www.ge.com/gas-power/applications/chp
Comodi, G., Carducci, F., Sze, J. Y., Balamurugan, N., & Romagnoli, A. (2017). Storing energy for cooling demand management in tropical climates: A techno-economic comparison between different energy storage technologies. Energy, 121, 676-694. https://doi.org/10.1016/j.energy.2017.01.038
Cossi, A. M., Silva, L. G. W. D., Lazaro, R. A. R., & Mantovani, J. R. S. (2012). Primary power distribution systems planning taking into account reliability, operation and expansion costs. IET Generation, Transmission & Distribution, 6(3), 274-284. https://doi.org/10.1049/iet-gtd.2010.0666
Dumbrava, V., Lazaroiu, C., Roscia, C., & Zaninelli, D. (2011, May 8-11). Expansion planning and reliability evaluation of distribution networks by heuristic algorithms. [Paper presentation]. 10th International Conference on Environment and Electrical Engineering, Rome, Italy. https://doi.org/10.1109/EEEIC.2011.5874766
Ehsan, A., & Yang, Q. (2019a). Active distribution system reinforcement planning with EV charging stations—Part I: Uncertainty modeling and problem formulation. IEEE Transactions on Sustainable Energy, 11(2), 970-978. https//doi.org/10.1109/TSTE.2019.2915338
Ehsan, A., & Yang, Q. (2019b). Active distribution system reinforcement planning with EV charging stations–Part II: Numerical results. IEEE Transactions on Sustainable Energy, 11(2), 979-987. https//doi.org/10.1109/TSTE.2019.2915383
Eid, A., Kamel, S., Zawbaa, H. M., & Dardeer, M. (2022). Improvement of active distribution systems with high penetration capacities of shunt reactive compensators and distributed generators using Bald Eagle Search. Ain Shams Engineering Journal, 13(6), Article 101792. https://doi.org/10.1016/j.asej.2022.101792
El-Ela, A. A. A., El-Seheimy, R. A., Shaheen, A. M., & Eissa, I. A. (2019, December 17-19). Optimal allocation of DGs and capacitor devices using improved grey wolf optimizer. [Paper presentation]. 21st International Middle East Power Systems Conference (MEPCON), Cairo, Egypt. https//doi.org/10.1109/MEPCON47431.2019.9008228
Energy Commission. (2017). Distribution code for Peninsular Malaysia, Sabah & F.T. Labuan (Kod/ST/No.1/2016 Pin. 2017). Energy Commission.
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.st.gov.my/contents/ publications/guidelines_electricity/2017/Distribution%20Code%20For%20Peninsular%20 Malaysia%20Sabah%20%20F.T.%20Labuan%20Amendments%202017_V5.pdf
Esmaeili, M., Sedighizadeh, M., & Esmaili, M. (2016). Multi-objective optimal reconfiguration and DG (Distributed Generation) power allocation in distribution networks using Big Bang-Big Crunch algorithm considering load uncertainty. Energy, 103, 86-99. https://doi.org/10.1016/j.energy.2016.02.152
Fan, V. H., Meng, K., & Dong, Z. (2021, June 21-25). Integration of electric vehicle load and charging infrastructure in distribution network. [Paper presentation]. IEEE Transportation Electrification Conference & Expo (ITEC), Chicago, USA. htpps://doi.org/10.1109/ITEC51675.2021.9490169
Ferreira, L. R. A., Otto, R. B., Silva, F. P., De Souza, S. N. M., De Souza, S. S., & Junior, O. A. (2018). Review of the energy potential of the residual biomass for the distributed generation in Brazil. Renewable and Sustainable Energy Reviews, 94, 440-455. https://doi.org/10.1016/j.rser.2018.06.034
Francisco, M., Saumaa, E., Aguadob, J., Torreb, S. d., & Contreras, J. (2020). The impact of electric vehicle charging schemes in power system expansion planning. Applied Energy, 262, Article 114527. https://doi.org/10.1016/j.apenergy.2020.114527
Freitas, F. F., De Souza, S. S., Ferreira, L. R. A., Otto, R. B., Alessio, F. J., De Souza, S. N. M. & Junior, O. A. (2019). The Brazilian market of distributed biogas generation: Overview, technological development and case study. Renewable and Sustainable Energy Reviews, 101, 146-157.https://doi.org/10.1016/j.rser.2018.11.007
Gallano, R. J. C., & Nerves, A. C. (2014, October 22-25). Multi-objective optimization of distribution network reconfiguration with capacitor and distributed generator placement. [Paper presentation]. TENCON 2014-2014 IEEE region 10 conference, Bangkok Thailand. https://doi.10.1109/TENCON.2014.7022365
Gallo, J. B. (2016). Electric truck & bus grid integration, opportunities, challenges & recommendations. World Electric Vehicle Journal, 8(1), 45-56. https://doi.org/10.3390/wevj8010045
Georgilakis, P. S., & Hatziargyriou, N. D. (2015). A review of power distribution planning in the modern power systems era: Models, methods and future research. Electric Power Systems Research, 121, 89-100. https://doi.org/10.1016/j.epsr.2014.12.010
Gholami, K., Karimi, S., & Anvari-Moghaddam, A. (2022). Multi-objective stochastic planning of electric vehicle charging stations in unbalanced distribution networks supported by smart photovoltaic inverters. Sustainable Cities and Society, 84, Article 104029. https://doi.org/10.1016/j.scs.2022.104029
He, J., Yang, X. L., Deng, C., Liu, G., Huang, W., & Zhu, L. (2022). Expansion planning of electric vehicle charging stations considering the benefits of peak‐regulation frequency modulation. IET Generation, Transmission & Distribution, 16(7), 1400-1415. https://doi.org/10.1049/gtd2.12376
Hemmati, R., Hooshmand, R. A., & Taheri, N. (2015). Distribution network expansion planning and DG placement in the presence of uncertainties. International Journal of Electrical Power & Energy Systems, 73, 665-673. https://doi.org/10.1016/j.ijepes.2015.05.024
Hoog, J. D., Alpcan, T., Brazil, M., Thomas, D. A., & Mareels, I. (2014). Optimal charging of electric vehicles taking distribution network constraints into account. IEEE Transactions on Power Systems, 30(1), 365-375. https://doi.org/10.1109/TPWRS.2014.2318293
IRENA. (2023). Malaysia Energy Transition Outlook. International Renewable Energy Agency.
Jeddi, B., Vahidinasab, V., Ramezanpour, P., Aghaei, J., Shafie-khah, M., & Catalão, J. P. (2019). Robust optimization framework for dynamic distributed energy resources planning in distribution networks. International Journal of Electrical Power & Energy Systems, 110, 419-433. https://doi.org/10.1016/j.ijepes.2019.03.026
Kabirifar, M., Fotuhi-Firuzabad, M., Moeini-Aghtaie, M., & Pourghaderia, N. (2019, April 30 - May 2). Joint distributed generation and active distribution network expansion planning considering active management of network. [Paper presentation]. 27th Iranian Conference on Electrical Engineering (ICEE), Yazd, Iran. https://doi.org/10.1109/IranianCEE.2019.8786665
Karagiannopoulos, S., Aristidou, P., & Hug, G. (2017, June 18-22). Co-optimisation of planning and operation for active distribution grids. [Paper presentation]. IEEE Manchester PowerTech, Manchester, United Kingdom. https://doi.org/10.1109/PTC.2017.7981112
KC, A. K., & Regmi, T. R. (2019). Optimal allocation of capacitor bank for loss minimization and voltage improvement using analytical method. SCITECH Nepal, 14(1), 1-7. https://doi.org/10.3390/wevj3020214
KeTTHA. (2017). Green Technology Master Plan Malaysia 2017-2030. Ministry of Energy, Green Technology and Water Malaysia.
Kumar, C. R., & Kumar, M. S. (2020). An approach of multistage distribution system network expansion planning considering investment, operational cost and reliability of system. Indian Journal of Science and Technology, 13(30), 2125-2140. https://doi.org/10.17485/IJST/v13i30.678
Lin, Z., Hu, Z., & Song, Y. (2019). Distribution network expansion planning considering $ N-1$ criterion. IEEE Transactions on Power Systems, 34(3), 2476-2478. https://doi.org10.1109/TPWRS.2019.2896841
Liu, J., Cheng, H., Xu, Q., Lan, Z., Zeng, P., & Yao, L. (2017). Stochastic expansion planning of interconnected distribution networks with renewable sources considering uncertainties and power transfer capability. The Journal of Engineering, 2017(13), 1600-1604. htpps://doi.org/10.1049/joe.2017.0602
Lopez, K., Mariscal, W., Plazarte, J., & Urquizo, J. (2021, March 10-12). Allocation and optimal sizing of flexible capacitor banks for the minimization of active power losses in long unbalanced rural medium voltage distribution feeders using heuristic algorithms. [Paper presentation]. 22nd IEEE International Conference on Industrial Technology (ICIT), Valencia, Spain. https://doi.org/ 10.1109/ICIT46573.2021.9453500
Lucas, A., Bonavitacola, F., Kotsakis, E., & Fulli, G. (2015). Grid harmonic impact of multiple electric vehicle fast charging. Electric Power Systems Research, 127, 13-21. https://doi.org/10.1016/j.epsr.2015.05.012
Manríquez, F., Sauma, E., Aguado, J., Torre, S. D. L., & Contreras, J. (2020). The impact of electric vehicle charging schemes in power system expansion planning. Applied Energy, 262, Article 114527. https://doi.org/10.1016/j.apenergy.2020.114527
Mansor, N. N., & Levi, V. (2017). Integrated planning of distribution networks considering utility planning concepts. IEEE Transactions on Power Systems, 32(6), 4656-4672. https://doi.org/ 10.1109/TPWRS.2017.2687099
Masoumi-Amiri, S. M., Shahabi, M., & Barforoushi, T. (2021). Interactive framework development for microgrid expansion strategy and distribution network expansion planning. Sustainable Energy, Grids and Networks, 27, Article 100512. https://doi.org/10.1016/j.segan.2021.100512
Mazhari, S. M., Monsef, H., & Romero, R. (2015). A multi-objective distribution system expansion planning incorporating customer choices on reliability. IEEE Transactions on Power Systems, 31(2), 1330-1340. https://doi.org/ 10.1109/TPWRS.2015.2430278
Melgar-Dominguez, O. D., Salas, R. W., & Mantovani, J. R. S. (2021). Short-term distribution system planning using a system reduction technique. IEEE Access, 9, 153586-153598. https://doi.org/ 10.1109/ACCESS.2021.3128052
Moazzami, M., Bagherzadeh, L., Barzandeh, A., Shahinzadeh, H., & Gharehpetian, G. B. (2019). Active distribution system expansion planning using lion pride optimization algorithm. International Journal of Renewable Energy Research (IJRER), 9(3), 1548-1559. https://doi.org/10.20508/ijer.v9i3.9745.g7744
Moradijoz, M., Moghaddam, M. P., & Haghifam, M. R. (2017). A flexible distribution system expansion planning model: A dynamic bi-level approach. IEEE Transactions on Smart Grid, 9(6), 5867-5877. https://doi.org/10.1109/TSG.2017.2697917
MOT. (2019). National Transport Policy 2019- 2030. Ministry of Transportation Malaysia.
Muñoz-Delgado, G., Contreras, J., & Arroyo, J. M. (2015). Multistage generation and network expansion planning in distribution systems considering uncertainty and reliability. IEEE Transactions on Power Systems, 31(5), 3715-3728. https://doi.org/DOI: 10.1109/TPWRS.2015.2503604
Muthukumar, K., & Jayalalitha, S. (2016). Optimal placement and sizing of distributed generators and shunt capacitors for power loss minimization in radial distribution networks using hybrid heuristic search optimization technique. International Journal of Electrical Power & Energy Systems, 78, 299-319. https://doi.org/10.1016/j.ijepes.2015.11.019
Nejadfard-Jahromi, S., Rashidinejad, M., & Abdollahi, A. (2015). Multistage distribution network expansion planning under smart grids environment. International Journal of Electrical Power & Energy Systems, 71, 222-230. https://doi.org/10.1016/j.ijepes.2015.02.021
Pathak, O., & Prakash, P. (2018, October 22-24). Load flow solution for radial distribution network. [Paper presentation]. 2nd IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India. https://doi.org/10.1109/ICPEICES.2018.8897305
Pinto, R. S., Unsihuay‐Vila, C., & Fernandes, T. S. (2019). Multi‐objective and multi‐period distribution expansion planning considering reliability, distributed generation and self‐healing. IET Generation, Transmission & Distribution, 13(2), 219-228. https://doi.org/10.1049/iet-gtd.2018.5037
Pinto, R. S., Unsihuay-Vila, C., & Tabarro, F. H. (2021). Coordinated operation and expansion planning for multiple microgrids and active distribution networks under uncertainties. Applied Energy, 297, Article 117108. https://doi.org/10.1016/j.apenergy.2021.117108
Poornazaryan, B., Karimyan, P., Gharehpetian, G. B., & Abedi, M. (2016). Optimal allocation and sizing of DG units considering voltage stability, losses and load variations. International Journal of Electrical Power & Energy Systems, 79, 42-52. https://doi.org/10.1016/j.ijepes.2015.12.034
Quevedo, P. M. D., Muñoz-Delgado, G., & Contreras, J. (2017). Impact of electric vehicles on the expansion planning of distribution systems considering renewable energy, storage, and charging stations. IEEE Transactions on Smart Grid, 10(1), 794-804. https://doi.org/10.1109/TSG.2017.2752303
Ramírez-Rosado, I. J., & Bernal-Agustín, J. L. (2001). Reliability and costs optimization for distribution networks expansion using an evolutionary algorithm. IEEE Transactions on Power Systems, 16(1), 111-118. https://doi.org/10.1109/59.910788
Rangarajan, S. S., Collins, E. R., & Fox, J. C. (2017, November 5-8). Interactive impacts of elements of distribution systems and PV on network harmonic resonance. [Paper presentation]. IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), San Diego, USA. https://doi.org/10.1109/ICRERA.2017.8191149
Raza, A., Xu, D., Mian, M. S., & Ahmed, J. (2013, December 19-20). A micro hydro power plant for distributed generation using municipal water waste with Archimedes screw. [Paper presentation]. IEEE International Conference on Multi Topic (INMIC), Lahore, Pakistan. https://doi.org/10.1109/INMIC.2013.6731326
Shen, X., Shahidehpour, M., Zhu, S., Han, Y., & Zheng, J. (2016). Multi-stage planning of active distribution networks considering the co-optimization of operation strategies. IEEE Transactions on Smart Grid, 9(2), 1425-1433. https://doi.org/10.1109/TSG.2016.2591586
Singh, B., & Dubey, P. K. (2022). Distributed power generation planning for distribution networks using electric vehicles: Systematic attention to challenges and opportunities. Journal of Energy Storage, 48, Article 104030. https://doi.org/10.1016/j.est.2022.104030
Sirjani, R. (2017). Optimal capacitor placement in wind farms by considering harmonics using discrete lightning search algorithm. Sustainability, 9(9), Article 1669. https://doi.org/10.3390/su9091669
Srinivasan, G., & Visalakshi, S. J. E. P. (2017). Application of AGPSO for power loss minimization in radial distribution network via DG units, capacitors and NR. Energy Procedia, 117, 190-200. https://doi.org/10.1016/j.egypro.2017.05.122
Taljegard, M., Göransson, L., Odenberger, M., & Johnsson, F. (2019). Impacts of electric vehicles on the electricity generation portfolio–A Scandinavian-German case study. Applied Energy, 235, 1637-1650. https://doi.org/10.1016/j.apenergy.2018.10.133
Technologies of Energy Storage. (2022). Retrieved from energy storage. Technologies of Energy Storage. http://energystorage.org/why-energy-storage/technologies/
Twaisan, K., & Barışçı, N. (2022). Integrated distributed energy resources (DER) and microgrids: Modeling and optimization of DERs. Electronics, 11(18), Article 2816. https://doi.org/10.3390/electronics11182816
UNFCC. (2015). The Paris Agreement. United Nations Framework Convention on Climate Change.
Veldman, E., & Verzijlbergh, R. A. (2014). Distribution grid impacts of smart electric vehicle charging from different perspectives. IEEE Transactions on Smart Grid, 6(1), 333-342. https://doi.org/10.1109/TSG.2014.2355494
Verma, M. K., Yadav, V. K., & Mukherjee, V. (2019, August). Objective functions of distribution network expansion planning-a comprehensive and exhaustive review. IOP Conference Series: Materials Science and Engineering, 594(1), Article 012016. https://doi.org/10.1088/1757-899X/594/1/012016
Yu, C., Ye, B., Wang, X., & Zhao, F. (2019, December). Method for electricity distribution network expansion planning considering opening incremental distribution network. IOP Conference Series: Materials Science and Engineering, 677(4), Article 042081. https://doi.org/10.1088/1757-899X/677/4/042081
Zhang, J., Wang, S., Zhang, C., Luo, F., Dong, Z. Y., & Li, Y. (2021). Planning of electric vehicle charging stations and distribution system with highly renewable penetrations. IET Electrical Systems in Transportation, 11(3), 256-268. https://doi.org/10.1049/els2.12022
Zhou, N., Wang, J., Wang, Q., & Wei, N. (2014). Measurement-based harmonic modeling of an electric vehicle charging station using a three-phase uncontrolled rectifier. IEEE Transactions on Smart Grid, 6(3), 1332-1340. https://doi.org/10.1109/TSG.2014.2374675
Zou, M., Yang, Y., Liu, M., Wang, W., Jia, H., Peng, X., & Liu, D. (2022). Optimization model of electric vehicles charging and discharging strategy considering the safe operation of distribution network. World Electric Vehicle Journal, 13(7), Article 117. https://doi.org/10.3390/wevj13070117
ISSN 0128-7680
e-ISSN 2231-8526