e-ISSN 2231-8526
ISSN 0128-7680
Abbas Moloody, Azizan As’arry, Tang Saihong, Raja Kamil, and Mohd Zuhri Mohamed Yusoff
Pertanika Journal of Science & Technology, Volume 33, Issue 1, January 2025
DOI: https://doi.org/10.47836/pjst.33.1.02
Keywords: Differential evolution, double links, mechanical vibrations, multi-links, optimization, robotics flexible manipulator, single link
Published on: 23 January 2025
Flexible Manipulators (FMs) provide a number of benefits, containing reduced weight due to the thinness of the robot’s linkages. Although the initial plan was to use actual robots’ flexibility or slenderness to their advantage, the complex dynamics of the systems piqued interest in using an experimental flexible manipulator as a testing ground for various modeling or control strategies. A review is essential for researchers who want to align their study objectives with those of the field because the literature is extensive and diverse. Due to the widespread usage of flexible manipulators in different mechatronic and robotic applications over the past few decades, many academics worldwide are now interested in researching this topic. Studies are categorized here according to the control and modeling technologies of flexible manipulators and methodologies. Review of recent works on analysis, modeling, mechanical vibration, control algorithms, gyroscope technology and applications, difficulties in managing flexible manipulators and their anticipated future, and the majority of the notable evolutionary and optimization algorithms, including Genetic Algorithm (GA), Differential Evolution (DE), and Fuzzy Logic (FL), as well as modification approaches and techniques, are discussed and underlined. This study examines many publications, thoroughly reviewing the analytical, mathematical, dynamical modeling, mechanical vibration control techniques and most of the notable evolutionary and optimization algorithmic approaches of Robotic Flexible Manipulator (RFM) structures.
Abdul, K. M., Shingo, O., & Lee, J. H. (2014). Comparison of proportional-derivative and active-force controls on vibration of a flexible single-link manipulator using finite-element method. Artif Life Robotics, 11(3), 302-513. https://doi.org/10.1007/s10015-014-0186-5
Ahmad, M. F., Isa, N. A. M., Lim, W. H., & Ang, K. M. (2022). Differential evolution: A recent review based on state-of-the-art works. Alexandria Engineering Journal, 61(5), 3831–3872. https://doi.org/10.1016/j.aej.2021.09.013
Alandoli, E. A., Sulaiman, M., Rashid, M. Z. A., Shah, H. N. M., & Ismail, Z. (2016). A review study on flexible link manipulators. Journal of Telecommunication, Electronic and Computer Engineering, 8(2), 93-97. https://jtec.utem.edu.my/jtec/article/view/964
An, F., Chen, W. D., & Zhang, W. L. (2013). Acceleration feedback for active control on forced vibration of an intelligent cantilever beam. Journal of Ship Mechanics, 17(6), 702-713. https://doi.org/10.3969/j.issn.1007-7294.2013.06.013
Atef, A., Eman, H. H., Elfattah, A. R., & Sarwat, N. H. (2012). Optimal trajectory of flexible manipulators using genetic algorithms. Journal of Applied Mechanics and Materials 232, 648-656. https://doi.org/10.4028/www.scientific.net/AMM.232.648
Bai, M., Zhou, D. H., & Schwarz, H. (1998). Adaptive augmented state feedback control for an experimental planar two-link flexible manipulator. IEEE Transactions on Robotics and Automation, 14(6), 940–950. Bailey, T., James, E., & Hubbard, J. (1985). Distributed piezoelectric polymer active vibration control of a cantilever beam. Journal of Guidance, Control, and Dynamics, 8(5), 605-611. https://doi.org/10.2514/3.20029
Bansal, H. O., Sharma, R., & Shreeraman, P. R. (2017). PID controller tuning techniques: A Review. Journal of Control Engineering and Technology, 2, 168-176.
Benosman, M., & Vey, G. (2004). Control of flexible manipulators. A survey. Robotica, 22(05), 533-545. https://doi.org/10.1017/S0263574703005642
Bergeman, M. (1996). Dynamic and Control of Underactuated Manipulators [Ph.D. thesis]. Carnegie Mellon University, Pennsylvania.
Book, W. J., Maizza-Neto, O., & Whitney, D. E. (1975). Feedback control of two beam, two joint systems with distributed flexibility. Journal of Dynamical System Measurement and Control, 97(4), 424–431. https://doi.org/10.1115/1.3426959
Bossert, D., Ly, U., & Vagners, J. (1995). Evaluation of reduced-order controllers on a two-link flexible manipulator. In Proceedings of 1995 American Control Conference-ACC’95 (Vol. 5, pp. 3339-3343). IEEE Publishing. https://doi.org/10.1109/ACC.1995.532222
Braghin, F., Resta, F., Leo, E., & Spinola, G. (2007). Nonlinear dynamics of vibrating MEMS. Sensors and Actuators, A Physical, 134(1), 98-108. https://doi.org/10.1016/j.sna.2006.10.041
Cannon, R. H., & Schmitz, E. (1984). Initial experiments on end-point control of a flexible one-link robot. The International Journal of Robotics Research, 3(3), 62-75. https://doi.org/10.1177/0278364984003003
Castri, C. D., & Messina, A. (2010). Matrix formulations for solving the configuration-dependent eigenvalue problem of a two-link flexible manipulator. In 19th International Workshop on Robotics in Alpe-Adria-Danube Region (RAAD 2010) (pp. 225-230). IEEE Publishing. https://doi.org/10.1109/RAAD.2010.5524582
Chellaswamy, C., Krishnasamy, M., Balaji, L., Dhanalakshmi, A., & Ramesh, R. (2019). Optimized railway track health monitoring system based on dynamic differential evolution algorithm. Measurement, 148, Article 107332. https://doi.org/10.1016/j.measurement.2019.107332
Chen, B., Huang, J., & Jie, J. C. (2019). Control of flexible single-link manipulators having duffing oscillator dynamics. Mechanical Systems and Signal Processing, 121(15), 44-57. https://doi.org/10.1016/j.ymssp.2018.11.014
Chen, D., & Paden, B. (1996). Stable inversion of nonlinear non-minimum phase systems. International Journal of Control, 64(1), 81–97.
Chen, W., Yu, Y., Zhao, L., & Sun, Q. (2011). Position control of a 2DOF underactuated planar flexible manipulator. In 2011 IEEE International Conference on Mechatronics and Automation (pp. 464-469). IEEE Publishing. https://doi.org/10.1109/ICMA.2011.5985702
Chu, Z., & Cui, J. (2012). Vibration control of maneuvering spacecraft with flexible manipulator using adaptive disturbance rejection filter and command shaping technology. In 2012 Sixth International Conference on Internet Computing for Science and Engineering (pp. 97-101). IEEE Publishing. https://doi.org/10.1109/ICICSE.2012.13
Chu, Z., & Cui, J. (2015). Experiment on vibration control of a two-link flexible manipulator using an input shaper and adaptive positive position feedback. Advances in Mechanical Engineering, 7(10), 1–13. Dogan, M. (2012). Efficient energy scavengers by flexible robot arm with non-uniform cross-section. IET Control Theory and Applications, 6(7), 935-942. https://doi.org/ 10.1049/iet-cta.2011.0173
Dong, X. J., Meng, G., & Peng, J. C. (2006). Vibration control of piezoelectric smart structures based on system identification technique. Numerical simulation and experimental study. Journal Sound Vibration, 297(3-5), 680-693. https://doi.org/10.1016/j.jsv.2006.04.021
Dubravko, M. (2009). Review of active vibration control. In Conference: MIPRO 2009 (pp. 103-108). ResearchGate Publication. https://www.researchgate.net/publication/304081320
Feliu, V., Mu˜noz, I., Roncero, P. L., & L´opez, J. J. (2005). Repetitive control for single link flexible manipulators. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation (pp. 4303-4308). IEEE Publishing. https://doi.org/10.1109/ROBOT.2005.1570782
Fogel, D. B. (1994). An introduction to simulated evolutionary optimization. IEEE Transactions on Neural Networks, 5(1), 3-14. https://doi.org/10.1109/72.265956
Fukuda, T., & Arakawa, A. (1987). Modeling and control characteristics for a two-Degree-of freedom coupling system of flexible robot arm. JSME International Journal, 30(267), 1458–1464.
Ge, S. S., Lee, T. H., & Zhu, G. (1996). Genetic algorithm tuning of lyapunov based controllers. An application to a single link flexible robot system. IEEE Transactions on Industrial Electronics, 43(5), 567-574. https://doi.org/10.1109/41.538614
Goldberg, D. E. (1989). Genetic Algorithm in Search Optimization and Machine Learning. Addison-Wesley Professional. https://doi.org/10.1023/A:1022602019183
Green, A., & Sasiadek, J. Z. (2002). Inverse dynamics and fuzzy repetitive learning flexible robot control. IFAC Proceedings Volumes, 35(1), 139-144. https://doi.org/10.3182/20020721-6-ES-1901.00835
Grieves, M., & Vickers, J. (2017). Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In F. J. Kahlen, S. Flumerfelt & A. Alves (Eds.), Transdisciplinary Perspectives on Complex Systems (pp. 85-113). Springer. https://doi.org/10.1007/978-3-319-38756-7_4
Hirano, D., Nakanishi, H., Yoshida, K., Oda, M., Ueno, T., & Kuratomi, T. (2010, August 29 – September 1). Vibration control of flexible arm for robot experiment on JEM. In Proceedings of the 10th International Symposium on Artificial Intelligence, Robotics and Automation in Space (pp. 820-825). Sapporo, Japan.
Ho, M. T., & Tu, Y. W. (2006). Position control of a single-link flexible manipulator using H∞-based PID control. IEEE Proceedings-Control Theory and Applications, 153(5), 615-622. https://doi.org/10.1049/ip-cta:20050070
Huston, R. (1980). Flexibility effects in multibody system dynamics. Mechanics Research Communications, 7(4), 261-268. https://doi.org/10.1016/0093-6413(80)90048-8
Jian, L., & Wen, T. (2017). Adaptive RISE control of a multi-link flexible manipulator based on integral manifold approach. In 2014 International Conference on Multisensor Fusion and Information Integration for Intelligent Systems (MFI) (pp. 1-6). IEEE Publishing. https://doi.org/10.2991/caai-17.2017.22
Jung, B. K., Cho, J. R., & Jeong, W. B. (2015). Sensor placement optimization for structural modal identification of flexible structures using genetic algorithm. Journal of Mechanical Science and Technology, 29(7), 2775-2783.
Karagulle, H., Malgaca, L., Dirilmis, M., Akdag, M., & Yavuz, S. (2015). Vibration control of a two-link flexible manipulator. Journal of Vibration and Control, 23(12), 2023-2034. https://doi.org/10.1177/1077546315607694
Karkoub, M., Balas, G. J., & Tamma, K. (1995). Colocated and noncolocated control design via-synthesis for flexible manipulators. In Proceedings of 1995 American Control Conference-ACC’95 (Vol. 5, pp. 3321-3325). IEEE Publishing. https://doi.org/10.1109/ACC.1995.532218
Khorrami, F., & Jain, S. (1992). Experimental results on an inner/outer loop controller for a two-link flexible manipulator. In Proceedings 1992 IEEE International Conference on Robotics and Automation (pp. 742-743). IEEE Publishing. https://doi.org/10.1109/ROBOT.1992.220280
Khorrami, F., & Sandeep, J. (1994). Experiments on rigid body-based controllers with input preshaping for a two-link flexible manipulator. IEEE Transactions on Robotics and Automation, 10(1), 55–65. https://doi.org/10.1109/70.285586
Kiang, C. T., Spowage, A., & Yoong, C. K. (2015). Review of control and sensor system of flexible manipulator. Theory and applications. Journal of Intelligent and Robotic Systems, 77(1), 187-213. https://doi.org/10.1007/s10846-014-0071-4
Lee, J., Bagheri, B., & Kao, H. A. (2015). A Cyber-Physical Systems Architecture for Industry 4.0-based Manufacturing Systems. Elsevier. https://doi.org/10.1016/j.mfglet.2014.12.001
Li, D. X., Eric, L. X., & Ling, L. (2018). Industry 4.0: State of the art and future trends. International Journal of Production Research, 56(8), 2941-2962. https://doi.org/10.1080/00207543.2018.1444806
Li, Y. F., & Wang, G. L. (2000). On the internal dynamics of flexible manipulators based on symmetric dichotomy. IET Proceedings-Control Theory and Applications, 147(1), 59–70. https://doi.org/ 10.1049/ip-cta:20000109
Li, Y., Tong, S., & Li, T. (2013). Adaptive fuzzy output feedback control for a single-link flexible robot manipulator driven DC motor via backstepping. Nonlinear Analysis: Real World Applications, 14(1), 483-494. https://doi.org/10.1016/j.nonrwa.2012.07.010
Liu, J., & Zhang, L. (2013). Adaptive boundary control for flexible two-link manipulator based on partial differential equation dynamic model. IET Control Theory & Applications, 7(1), 43–51
Lochan, K., & Roy, B. K. (2015). Position control of two-link flexible manipulator using low chattering SMC techniques. International Journal of Control Theory and Application, 8(3), 1137–1146.
Lochan, K., Roy, B. K., & Subudhi, B. (2016). A review on two-link flexible manipulators. Annual Reviews in Control, 42, 346-367. https://doi.org/10.1016/j.arcontrol.2016.09.019
Mahamood, R. M., & Pedro, J. J. (2011). Hybrid PD/PID controller design for two-link flexible manipulators. In 2011 8th Asian Control Conference (ASCC) (pp. 1358-1363). IEEE Publishing.
Mahmood, I. A., Bhikkaji, B., Moheimani, M., & Reza, S. O. (2007). Vibration and position control of a flexible manipulator. Information, Decision and Control, IDC, 7, 260-265. https://doi.org/10.1109/IDC.2007.374560
Maouche, A. R., & Meddahi, H. (2016). A fast adaptive artificial neural network controller for flexible link manipulators. International Journal of Advanced Computer Science and Applications, 7(1), 298–308.
Mason, K., Duggan, J., & Howley, E. (2018). A multi-objective neural network trained with differential evolution for dynamic economic emission dispatch. International Journal of Electrical Power & Energy Systems, 100, 201-221. https://doi.org/10.1016/j.ijepes.2018.02.021
Mbede, J. B., Huang, X., & Wang, M. (2003). Robust neural-fuzzy sensor-based motion control among dynamic obstacles for robot manipulators. IEEE Transactions on Fuzzy Systems, 11(2), 249-261. https://doi.org/10.1109/TFUZZ.2003.809906
Pant, M., Zaheer, H., Garcia, H. L., & Abraham, A. (2020). Differential evolution: A review. Engineering Applications of Artificial Intelligence, 90, Article 03479. https://doi.org/10.1016/j.engappai.2020.103479
Paul, T., Yurkovich, S., & Özgüner, Ü. (1988). Acceleration feedback for control of a flexible manipulator arm. Journal of Field Robotics, 13(3), 183-194. https://doi.org/10.1002/rob.4620050302
Peng, L., Liu, S., Liu, R., & Wang, L. (2018). Effective long short-term memory with differential evolution algorithm for electricity price prediction. Energy, 149, 167–178. https://doi.org/10.1016/j.energy.2018.02.123
Pereira, E., Aphale, S. S., Feliu, V., & Moheimani, S. O. R. (2011). Integral resonant control for vibration damping and precise tip positioning of a single link flexible manipulator. IEEE/ASME Transactions on Mechatronics, 16(2), 232-240. https://doi.org/10.1109/TMECH.2009.2039713
Pereira, E., Becedas, J., Payo, I., Ramos, F., & Feliu, V. (2014). Control of flexible manipulators. In A. Jimenez, & B. M. Al Hadithi (Eds.), Robot Manipulators Trends and Development (pp. 267-296). BoD–Books on Demand. https://doi.org/10.5772/9209
Pradhan, S. K., & Subudhi, B. (2012). Real-time adaptive control of a flexible manipulator using reinforcement learning. IEEE Transactions on Automation Science and Engineering, 9(2), 237-249. https://doi.org/10.1109/TASE.2012.2189004
Rahimi, H. N., & Nazemizadeh, M. (2014). Dynamic analysis and intelligent control techniques for flexible manipulators. A Review on Advanced Robotics, 28(2), 63-76. http://dx.doi.org/10.1080/01691864.2013.839079
Rodr´ıguez, R., Reyes, J. M., Cort´es, F., & Guti´errez, A. M. (2017). Dynamics modeling of an under-actuated gyroscope system. In 2017 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE) (pp. 120-125). IEEE Publishing. https://doi.org/10.1109/ICMEAE.2017.34
Rokui, M. R., & Khorasani, K. (2000). Experimental results on discrete-time nonlinear adaptive tracking control of a flexible-link manipulator. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 30(1), 151-164. https://doi.org/10.1109/3477.826955
Ros, N. F. M., Saad, M. S. & Darus, I. (2015). Dynamic modeling and active vibration control of a flexible beam: A review. International Journal of Engineering & Technology, 15(5), 12-17.
Schoenwald, D. A., Feddema, J. A., Eider, G. R., & Segalman, D. A. (1991, April 7-12). Minimum – time trajectory control of a two-link flexible robotic manipulator. In IEEE Robotics and Automation Conference (pp. 2114-2120). Sacramento, CA.
Sloss, A. N., & Gustafson, S. (2020). 2019 evolutionary algorithms review. In W. Banzhaf, E. Goodman, L. Sheneman, L. Trujillo & B. Worzel (Eds.), Genetic Programming Theory and Practice XVII (pp. 307-344). Springer International Publishing. https://doi.org/10.1007/978-3-030-39958-0-16
Somolinos, J. A., Feliu, V., & Sánchez, L. (2002). Design, dynamic modeling, and experimental validation of a new three-degree-of-freedom flexible arm. Mechatronics, 12(7), 919-948. http://dx.doi.org/10.1016/S0957-4158(01)00033-2
Spong, M. W., & Vidyasagar, M. (1989). Robot dynamics and control. John Wiley and Sons.
Storn, R., & Price, K. (1997). Differential evolution. A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11, 341–359. https://doi.org/doi:10.1023/A:1008202821328
Sui, X., Chu, S. C., Pan, J. S., & Luo, H. (2020). Parallel compact differential evolution for optimization applied to image segmentation. Applied Sciences, 10(6), Article 2195. https://doi.org/10.3390/app10062195
Tang, L., Gouttefarde, M., Sun, H., Yin, L., & Zhou, C. (2021). Dynamic modeling and vibration suppression of a single-link flexible manipulator with two cables. Mechanism and Machine Theory, 162, Article 104347. https://doi.org/10.1016/j.mechmachtheory.2021.104347
Theodore, R. J., & Ghosal, A. (2003). Robust control of multilink flexible manipulators. Mechanism and Machine Theory, 38(4), 367–377.
Tokhi, M. O., & Azad, A. K. M. (2008). Flexible Robot Manipulators, Modeling, Simulation, and Control. Springer. https://doi.org/10.1049/PBCE068E
Tomei, P., & Tornambe, A. (1988). Approximate modeling of robots having elastic links. IEEE Transactions on Systems, Man and Cybernetics, 18(5), 831-840. https://doi.org/ 10.1109/21.21610
Tsypkin, Y. (1968). Self-learning. IEEE Transactions on Automatic Control, 13, 608-612. https://doi.org/10.1109/TAC.1968.1099015
Vakil, M., Fotouhi, R., & Nikiforuk, P. N. (2012). A new method for dynamic modeling of flexible-link flexible-joint manipulators. Journal of Vibration and Acoustics, 134(1), Article 014503. https://doi.org/10.1115/1.4004677
Vandini, A., Salerno, A., Payne, C. J., & Yang, G. (2014). Vision-based motion control of a flexible robot for surgical applications. In 2014 IEEE international conference on robotics and automation (ICRA) (pp. 6205-6211). IEEE Publishing. https://doi.org/10.1109/ICRA.2014.6907774
Vishal, K., & Aradhye, A. S. (2016). A review on active, semi-active, and passive vibration damping. International Journal of Current Engineering and Technology, 6(6), 2187-2191.
Wang, F., & Gao, Y. (2003). Advanced studies o flexible robotic manipulators modeling, design, control, and applications. World Scientific.
Wang, S., Li, Y., & Yang, H. (2019). Self-adaptive mutation differential evolution algorithm based on particle swarm optimization. Applied Soft Computing, 81, Article 105496. https://doi.org/10.1016/j.asoc.2019.105496
Wang, S., Shen, H.-W., Chai, H., & Liang, Y. (2019). Complex harmonic regularization with differential evolution in a memetic framework for biomarker selection. PLOS ONE, 14(2), Article e0210786. https://doi.org/10.1371/journal.pone.0210786
Xiang, W., Meng, X., An, M., Li, Y., & Gao, M. (2015). An enhanced differential evolution algorithm based on multiple mutation strategies. Computational Intelligence and Neuroscience, 2015, 1-15. https://doi.org/10.1155/2015/285730
Xiong, G., Zhang, J., Yuan, X., Shi, D., He, Y., & Yao, G. (2018). Parameter extraction of solar photovoltaic models by means of a hybrid differential evolution with whale optimization algorithm. Solar Energy, 176, 742-761. https://doi.org/10.1016/j.solener.2018.10.050
Yao, L., & Ge, Z. (2018). Variable selection for nonlinear soft sensor development with enhanced binary differential evolution algorithm. Control Engineering Practice, 72, 68–82. https://doi.org/10.1016/j.conengprac.2017.11.007
Yazdizadeh, A., Khorasani, K., & Patel, R. A. (2000). Identification of a two-Link flexible manipulator using adaptive time delay neural networks. IEEE Transactions on Systems Man and Cybernetics, 30(1), 165–172.
Yurkevich., V. D. (2011). Advances in PID control. IntechOpen. https://doi.org/10.5772/770
Yuwei, Y., Xinhua, Z., Minglu, Z., Guangzhu, M., & Shoujun, W. (2011). Study of dynamic transient stability of a 2-link wheeled-suspended mobile flexible manipulator. In 2011 Third International Conference on Measuring Technology and Mechatronics Automation (Vol. 3, pp. 397-400). IEEE Publishing. https://doi.org/10.1109/ICMTMA.2011.670
Zebin, T., & Alam, M. S. (2010). Dynamic modeling and fuzzy logic control of a two-link flexible manipulator using genetic optimization technique. In 2010 13th International Conference on Computer and Information Technology (ICCIT) (pp. 418-423). IEEE Publishing. https://doi.org/10.1155/2015/285730
Zhang, N., Feng, Y., & Yu, X. (2004). Optimization of terminal sliding control for two-link flexible manipulators. In 30th Annual Conference of IEEE Industrial Electronics Society, 2004 (Vol. 2, pp. 1318-1322). IEEE Publishing. https://doi.org/ 10.1109/IECON.2004.1431768
Zhang, Z., Ding, S., & Jia, W. (2019). A hybrid optimization algorithm based on cuckoo search and differential evolution for solving constrained engineering problems. Engineering Applications of Artificial Intelligence, 85, 254-268. https://doi.org/10.1016/j.engappai.2019.06.017
ISSN 0128-7680
e-ISSN 2231-8526