PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 33 (1) Jan. 2025 / JST-4850-2023

 

A Comprehensive Review Based on Analysis Modeling, Mechanical Vibration Control Strategies, and Optimization Methods of Robotics Flexible Manipulator Structures

Abbas Moloody, Azizan As’arry, Tang Saihong, Raja Kamil, and Mohd Zuhri Mohamed Yusoff

Pertanika Journal of Science & Technology, Volume 33, Issue 1, January 2025

DOI: https://doi.org/10.47836/pjst.33.1.02

Keywords: Differential evolution, double links, mechanical vibrations, multi-links, optimization, robotics flexible manipulator, single link

Published on: 23 January 2025

Flexible Manipulators (FMs) provide a number of benefits, containing reduced weight due to the thinness of the robot’s linkages. Although the initial plan was to use actual robots’ flexibility or slenderness to their advantage, the complex dynamics of the systems piqued interest in using an experimental flexible manipulator as a testing ground for various modeling or control strategies. A review is essential for researchers who want to align their study objectives with those of the field because the literature is extensive and diverse. Due to the widespread usage of flexible manipulators in different mechatronic and robotic applications over the past few decades, many academics worldwide are now interested in researching this topic. Studies are categorized here according to the control and modeling technologies of flexible manipulators and methodologies. Review of recent works on analysis, modeling, mechanical vibration, control algorithms, gyroscope technology and applications, difficulties in managing flexible manipulators and their anticipated future, and the majority of the notable evolutionary and optimization algorithms, including Genetic Algorithm (GA), Differential Evolution (DE), and Fuzzy Logic (FL), as well as modification approaches and techniques, are discussed and underlined. This study examines many publications, thoroughly reviewing the analytical, mathematical, dynamical modeling, mechanical vibration control techniques and most of the notable evolutionary and optimization algorithmic approaches of Robotic Flexible Manipulator (RFM) structures.

  • Abdul, K. M., Shingo, O., & Lee, J. H. (2014). Comparison of proportional-derivative and active-force controls on vibration of a flexible single-link manipulator using finite-element method. Artif Life Robotics, 11(3), 302-513. https://doi.org/10.1007/s10015-014-0186-5

  • Ahmad, M. F., Isa, N. A. M., Lim, W. H., & Ang, K. M. (2022). Differential evolution: A recent review based on state-of-the-art works. Alexandria Engineering Journal, 61(5), 3831–3872. https://doi.org/10.1016/j.aej.2021.09.013

  • Alandoli, E. A., Sulaiman, M., Rashid, M. Z. A., Shah, H. N. M., & Ismail, Z. (2016). A review study on flexible link manipulators. Journal of Telecommunication, Electronic and Computer Engineering, 8(2), 93-97. https://jtec.utem.edu.my/jtec/article/view/964

  • An, F., Chen, W. D., & Zhang, W. L. (2013). Acceleration feedback for active control on forced vibration of an intelligent cantilever beam. Journal of Ship Mechanics, 17(6), 702-713. https://doi.org/10.3969/j.issn.1007-7294.2013.06.013

  • Atef, A., Eman, H. H., Elfattah, A. R., & Sarwat, N. H. (2012). Optimal trajectory of flexible manipulators using genetic algorithms. Journal of Applied Mechanics and Materials 232, 648-656. https://doi.org/10.4028/www.scientific.net/AMM.232.648

  • Bai, M., Zhou, D. H., & Schwarz, H. (1998). Adaptive augmented state feedback control for an experimental planar two-link flexible manipulator. IEEE Transactions on Robotics and Automation, 14(6), 940–950. Bailey, T., James, E., & Hubbard, J. (1985). Distributed piezoelectric polymer active vibration control of a cantilever beam. Journal of Guidance, Control, and Dynamics, 8(5), 605-611. https://doi.org/10.2514/3.20029

  • Bansal, H. O., Sharma, R., & Shreeraman, P. R. (2017). PID controller tuning techniques: A Review. Journal of Control Engineering and Technology, 2, 168-176.

  • Benosman, M., & Vey, G. (2004). Control of flexible manipulators. A survey. Robotica, 22(05), 533-545. https://doi.org/10.1017/S0263574703005642

  • Bergeman, M. (1996). Dynamic and Control of Underactuated Manipulators [Ph.D. thesis]. Carnegie Mellon University, Pennsylvania.

  • Book, W. J., Maizza-Neto, O., & Whitney, D. E. (1975). Feedback control of two beam, two joint systems with distributed flexibility. Journal of Dynamical System Measurement and Control, 97(4), 424–431. https://doi.org/10.1115/1.3426959

  • Bossert, D., Ly, U., & Vagners, J. (1995). Evaluation of reduced-order controllers on a two-link flexible manipulator. In Proceedings of 1995 American Control Conference-ACC’95 (Vol. 5, pp. 3339-3343). IEEE Publishing. https://doi.org/10.1109/ACC.1995.532222

  • Braghin, F., Resta, F., Leo, E., & Spinola, G. (2007). Nonlinear dynamics of vibrating MEMS. Sensors and Actuators, A Physical, 134(1), 98-108. https://doi.org/10.1016/j.sna.2006.10.041

  • Cannon, R. H., & Schmitz, E. (1984). Initial experiments on end-point control of a flexible one-link robot. The International Journal of Robotics Research, 3(3), 62-75. https://doi.org/10.1177/0278364984003003

  • Castri, C. D., & Messina, A. (2010). Matrix formulations for solving the configuration-dependent eigenvalue problem of a two-link flexible manipulator. In 19th International Workshop on Robotics in Alpe-Adria-Danube Region (RAAD 2010) (pp. 225-230). IEEE Publishing. https://doi.org/10.1109/RAAD.2010.5524582

  • Chellaswamy, C., Krishnasamy, M., Balaji, L., Dhanalakshmi, A., & Ramesh, R. (2019). Optimized railway track health monitoring system based on dynamic differential evolution algorithm. Measurement, 148, Article 107332. https://doi.org/10.1016/j.measurement.2019.107332

  • Chen, B., Huang, J., & Jie, J. C. (2019). Control of flexible single-link manipulators having duffing oscillator dynamics. Mechanical Systems and Signal Processing, 121(15), 44-57. https://doi.org/10.1016/j.ymssp.2018.11.014

  • Chen, D., & Paden, B. (1996). Stable inversion of nonlinear non-minimum phase systems. International Journal of Control, 64(1), 81–97.

  • Chen, W., Yu, Y., Zhao, L., & Sun, Q. (2011). Position control of a 2DOF underactuated planar flexible manipulator. In 2011 IEEE International Conference on Mechatronics and Automation (pp. 464-469). IEEE Publishing. https://doi.org/10.1109/ICMA.2011.5985702

  • Chu, Z., & Cui, J. (2012). Vibration control of maneuvering spacecraft with flexible manipulator using adaptive disturbance rejection filter and command shaping technology. In 2012 Sixth International Conference on Internet Computing for Science and Engineering (pp. 97-101). IEEE Publishing. https://doi.org/10.1109/ICICSE.2012.13

  • Chu, Z., & Cui, J. (2015). Experiment on vibration control of a two-link flexible manipulator using an input shaper and adaptive positive position feedback. Advances in Mechanical Engineering, 7(10), 1–13. Dogan, M. (2012). Efficient energy scavengers by flexible robot arm with non-uniform cross-section. IET Control Theory and Applications, 6(7), 935-942. https://doi.org/ 10.1049/iet-cta.2011.0173

  • Dong, X. J., Meng, G., & Peng, J. C. (2006). Vibration control of piezoelectric smart structures based on system identification technique. Numerical simulation and experimental study. Journal Sound Vibration, 297(3-5), 680-693. https://doi.org/10.1016/j.jsv.2006.04.021

  • Dubravko, M. (2009). Review of active vibration control. In Conference: MIPRO 2009 (pp. 103-108). ResearchGate Publication. https://www.researchgate.net/publication/304081320

  • Feliu, V., Mu˜noz, I., Roncero, P. L., & L´opez, J. J. (2005). Repetitive control for single link flexible manipulators. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation (pp. 4303-4308). IEEE Publishing. https://doi.org/10.1109/ROBOT.2005.1570782

  • Fogel, D. B. (1994). An introduction to simulated evolutionary optimization. IEEE Transactions on Neural Networks, 5(1), 3-14. https://doi.org/10.1109/72.265956

  • Fukuda, T., & Arakawa, A. (1987). Modeling and control characteristics for a two-Degree-of freedom coupling system of flexible robot arm. JSME International Journal, 30(267), 1458–1464.

  • Ge, S. S., Lee, T. H., & Zhu, G. (1996). Genetic algorithm tuning of lyapunov based controllers. An application to a single link flexible robot system. IEEE Transactions on Industrial Electronics, 43(5), 567-574. https://doi.org/10.1109/41.538614

  • Goldberg, D. E. (1989). Genetic Algorithm in Search Optimization and Machine Learning. Addison-Wesley Professional. https://doi.org/10.1023/A:1022602019183

  • Green, A., & Sasiadek, J. Z. (2002). Inverse dynamics and fuzzy repetitive learning flexible robot control. IFAC Proceedings Volumes, 35(1), 139-144. https://doi.org/10.3182/20020721-6-ES-1901.00835

  • Grieves, M., & Vickers, J. (2017). Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In F. J. Kahlen, S. Flumerfelt & A. Alves (Eds.), Transdisciplinary Perspectives on Complex Systems (pp. 85-113). Springer. https://doi.org/10.1007/978-3-319-38756-7_4

  • Hirano, D., Nakanishi, H., Yoshida, K., Oda, M., Ueno, T., & Kuratomi, T. (2010, August 29 – September 1). Vibration control of flexible arm for robot experiment on JEM. In Proceedings of the 10th International Symposium on Artificial Intelligence, Robotics and Automation in Space (pp. 820-825). Sapporo, Japan.

  • Ho, M. T., & Tu, Y. W. (2006). Position control of a single-link flexible manipulator using H∞-based PID control. IEEE Proceedings-Control Theory and Applications, 153(5), 615-622. https://doi.org/10.1049/ip-cta:20050070

  • Huston, R. (1980). Flexibility effects in multibody system dynamics. Mechanics Research Communications, 7(4), 261-268. https://doi.org/10.1016/0093-6413(80)90048-8

  • Jian, L., & Wen, T. (2017). Adaptive RISE control of a multi-link flexible manipulator based on integral manifold approach. In 2014 International Conference on Multisensor Fusion and Information Integration for Intelligent Systems (MFI) (pp. 1-6). IEEE Publishing. https://doi.org/10.2991/caai-17.2017.22

  • Jung, B. K., Cho, J. R., & Jeong, W. B. (2015). Sensor placement optimization for structural modal identification of flexible structures using genetic algorithm. Journal of Mechanical Science and Technology, 29(7), 2775-2783.

  • Karagulle, H., Malgaca, L., Dirilmis, M., Akdag, M., & Yavuz, S. (2015). Vibration control of a two-link flexible manipulator. Journal of Vibration and Control, 23(12), 2023-2034. https://doi.org/10.1177/1077546315607694

  • Karkoub, M., Balas, G. J., & Tamma, K. (1995). Colocated and noncolocated control design via-synthesis for flexible manipulators. In Proceedings of 1995 American Control Conference-ACC’95 (Vol. 5, pp. 3321-3325). IEEE Publishing. https://doi.org/10.1109/ACC.1995.532218

  • Khorrami, F., & Jain, S. (1992). Experimental results on an inner/outer loop controller for a two-link flexible manipulator. In Proceedings 1992 IEEE International Conference on Robotics and Automation (pp. 742-743). IEEE Publishing. https://doi.org/10.1109/ROBOT.1992.220280

  • Khorrami, F., & Sandeep, J. (1994). Experiments on rigid body-based controllers with input preshaping for a two-link flexible manipulator. IEEE Transactions on Robotics and Automation, 10(1), 55–65. https://doi.org/10.1109/70.285586

  • Kiang, C. T., Spowage, A., & Yoong, C. K. (2015). Review of control and sensor system of flexible manipulator. Theory and applications. Journal of Intelligent and Robotic Systems, 77(1), 187-213. https://doi.org/10.1007/s10846-014-0071-4

  • Lee, J., Bagheri, B., & Kao, H. A. (2015). A Cyber-Physical Systems Architecture for Industry 4.0-based Manufacturing Systems. Elsevier. https://doi.org/10.1016/j.mfglet.2014.12.001

  • Li, D. X., Eric, L. X., & Ling, L. (2018). Industry 4.0: State of the art and future trends. International Journal of Production Research, 56(8), 2941-2962. https://doi.org/10.1080/00207543.2018.1444806

  • Li, Y. F., & Wang, G. L. (2000). On the internal dynamics of flexible manipulators based on symmetric dichotomy. IET Proceedings-Control Theory and Applications, 147(1), 59–70. https://doi.org/ 10.1049/ip-cta:20000109

  • Li, Y., Tong, S., & Li, T. (2013). Adaptive fuzzy output feedback control for a single-link flexible robot manipulator driven DC motor via backstepping. Nonlinear Analysis: Real World Applications, 14(1), 483-494. https://doi.org/10.1016/j.nonrwa.2012.07.010

  • Liu, J., & Zhang, L. (2013). Adaptive boundary control for flexible two-link manipulator based on partial differential equation dynamic model. IET Control Theory & Applications, 7(1), 43–51

  • Lochan, K., & Roy, B. K. (2015). Position control of two-link flexible manipulator using low chattering SMC techniques. International Journal of Control Theory and Application, 8(3), 1137–1146.

  • Lochan, K., Roy, B. K., & Subudhi, B. (2016). A review on two-link flexible manipulators. Annual Reviews in Control, 42, 346-367. https://doi.org/10.1016/j.arcontrol.2016.09.019

  • Mahamood, R. M., & Pedro, J. J. (2011). Hybrid PD/PID controller design for two-link flexible manipulators. In 2011 8th Asian Control Conference (ASCC) (pp. 1358-1363). IEEE Publishing.

  • Mahmood, I. A., Bhikkaji, B., Moheimani, M., & Reza, S. O. (2007). Vibration and position control of a flexible manipulator. Information, Decision and Control, IDC, 7, 260-265. https://doi.org/10.1109/IDC.2007.374560

  • Maouche, A. R., & Meddahi, H. (2016). A fast adaptive artificial neural network controller for flexible link manipulators. International Journal of Advanced Computer Science and Applications, 7(1), 298–308.

  • Mason, K., Duggan, J., & Howley, E. (2018). A multi-objective neural network trained with differential evolution for dynamic economic emission dispatch. International Journal of Electrical Power & Energy Systems, 100, 201-221. https://doi.org/10.1016/j.ijepes.2018.02.021

  • Mbede, J. B., Huang, X., & Wang, M. (2003). Robust neural-fuzzy sensor-based motion control among dynamic obstacles for robot manipulators. IEEE Transactions on Fuzzy Systems, 11(2), 249-261. https://doi.org/10.1109/TFUZZ.2003.809906

  • Pant, M., Zaheer, H., Garcia, H. L., & Abraham, A. (2020). Differential evolution: A review. Engineering Applications of Artificial Intelligence, 90, Article 03479. https://doi.org/10.1016/j.engappai.2020.103479

  • Paul, T., Yurkovich, S., & Özgüner, Ü. (1988). Acceleration feedback for control of a flexible manipulator arm. Journal of Field Robotics, 13(3), 183-194. https://doi.org/10.1002/rob.4620050302

  • Peng, L., Liu, S., Liu, R., & Wang, L. (2018). Effective long short-term memory with differential evolution algorithm for electricity price prediction. Energy, 149, 167–178. https://doi.org/10.1016/j.energy.2018.02.123

  • Pereira, E., Aphale, S. S., Feliu, V., & Moheimani, S. O. R. (2011). Integral resonant control for vibration damping and precise tip positioning of a single link flexible manipulator. IEEE/ASME Transactions on Mechatronics, 16(2), 232-240. https://doi.org/10.1109/TMECH.2009.2039713

  • Pereira, E., Becedas, J., Payo, I., Ramos, F., & Feliu, V. (2014). Control of flexible manipulators. In A. Jimenez, & B. M. Al Hadithi (Eds.), Robot Manipulators Trends and Development (pp. 267-296). BoD–Books on Demand. https://doi.org/10.5772/9209

  • Pradhan, S. K., & Subudhi, B. (2012). Real-time adaptive control of a flexible manipulator using reinforcement learning. IEEE Transactions on Automation Science and Engineering, 9(2), 237-249. https://doi.org/10.1109/TASE.2012.2189004

  • Rahimi, H. N., & Nazemizadeh, M. (2014). Dynamic analysis and intelligent control techniques for flexible manipulators. A Review on Advanced Robotics, 28(2), 63-76. http://dx.doi.org/10.1080/01691864.2013.839079

  • Rodr´ıguez, R., Reyes, J. M., Cort´es, F., & Guti´errez, A. M. (2017). Dynamics modeling of an under-actuated gyroscope system. In 2017 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE) (pp. 120-125). IEEE Publishing. https://doi.org/10.1109/ICMEAE.2017.34

  • Rokui, M. R., & Khorasani, K. (2000). Experimental results on discrete-time nonlinear adaptive tracking control of a flexible-link manipulator. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 30(1), 151-164. https://doi.org/10.1109/3477.826955

  • Ros, N. F. M., Saad, M. S. & Darus, I. (2015). Dynamic modeling and active vibration control of a flexible beam: A review. International Journal of Engineering & Technology, 15(5), 12-17.

  • Schoenwald, D. A., Feddema, J. A., Eider, G. R., & Segalman, D. A. (1991, April 7-12). Minimum – time trajectory control of a two-link flexible robotic manipulator. In IEEE Robotics and Automation Conference (pp. 2114-2120). Sacramento, CA.

  • Sloss, A. N., & Gustafson, S. (2020). 2019 evolutionary algorithms review. In W. Banzhaf, E. Goodman, L. Sheneman, L. Trujillo & B. Worzel (Eds.), Genetic Programming Theory and Practice XVII (pp. 307-344). Springer International Publishing. https://doi.org/10.1007/978-3-030-39958-0-16

  • Somolinos, J. A., Feliu, V., & Sánchez, L. (2002). Design, dynamic modeling, and experimental validation of a new three-degree-of-freedom flexible arm. Mechatronics, 12(7), 919-948. http://dx.doi.org/10.1016/S0957-4158(01)00033-2

  • Spong, M. W., & Vidyasagar, M. (1989). Robot dynamics and control. John Wiley and Sons.

    Storn, R., & Price, K. (1997). Differential evolution. A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11, 341–359. https://doi.org/doi:10.1023/A:1008202821328

  • Sui, X., Chu, S. C., Pan, J. S., & Luo, H. (2020). Parallel compact differential evolution for optimization applied to image segmentation. Applied Sciences, 10(6), Article 2195. https://doi.org/10.3390/app10062195

  • Tang, L., Gouttefarde, M., Sun, H., Yin, L., & Zhou, C. (2021). Dynamic modeling and vibration suppression of a single-link flexible manipulator with two cables. Mechanism and Machine Theory, 162, Article 104347. https://doi.org/10.1016/j.mechmachtheory.2021.104347

  • Theodore, R. J., & Ghosal, A. (2003). Robust control of multilink flexible manipulators. Mechanism and Machine Theory, 38(4), 367–377.

  • Tokhi, M. O., & Azad, A. K. M. (2008). Flexible Robot Manipulators, Modeling, Simulation, and Control. Springer. https://doi.org/10.1049/PBCE068E

  • Tomei, P., & Tornambe, A. (1988). Approximate modeling of robots having elastic links. IEEE Transactions on Systems, Man and Cybernetics, 18(5), 831-840. https://doi.org/ 10.1109/21.21610

  • Tsypkin, Y. (1968). Self-learning. IEEE Transactions on Automatic Control, 13, 608-612. https://doi.org/10.1109/TAC.1968.1099015

  • Vakil, M., Fotouhi, R., & Nikiforuk, P. N. (2012). A new method for dynamic modeling of flexible-link flexible-joint manipulators. Journal of Vibration and Acoustics, 134(1), Article 014503. https://doi.org/10.1115/1.4004677

  • Vandini, A., Salerno, A., Payne, C. J., & Yang, G. (2014). Vision-based motion control of a flexible robot for surgical applications. In 2014 IEEE international conference on robotics and automation (ICRA) (pp. 6205-6211). IEEE Publishing. https://doi.org/10.1109/ICRA.2014.6907774

  • Vishal, K., & Aradhye, A. S. (2016). A review on active, semi-active, and passive vibration damping. International Journal of Current Engineering and Technology, 6(6), 2187-2191.

  • Wang, F., & Gao, Y. (2003). Advanced studies o flexible robotic manipulators modeling, design, control, and applications. World Scientific.

  • Wang, S., Li, Y., & Yang, H. (2019). Self-adaptive mutation differential evolution algorithm based on particle swarm optimization. Applied Soft Computing, 81, Article 105496. https://doi.org/10.1016/j.asoc.2019.105496

  • Wang, S., Shen, H.-W., Chai, H., & Liang, Y. (2019). Complex harmonic regularization with differential evolution in a memetic framework for biomarker selection. PLOS ONE, 14(2), Article e0210786. https://doi.org/10.1371/journal.pone.0210786

  • Xiang, W., Meng, X., An, M., Li, Y., & Gao, M. (2015). An enhanced differential evolution algorithm based on multiple mutation strategies. Computational Intelligence and Neuroscience, 2015, 1-15. https://doi.org/10.1155/2015/285730

  • Xiong, G., Zhang, J., Yuan, X., Shi, D., He, Y., & Yao, G. (2018). Parameter extraction of solar photovoltaic models by means of a hybrid differential evolution with whale optimization algorithm. Solar Energy, 176, 742-761. https://doi.org/10.1016/j.solener.2018.10.050

  • Yao, L., & Ge, Z. (2018). Variable selection for nonlinear soft sensor development with enhanced binary differential evolution algorithm. Control Engineering Practice, 72, 68–82. https://doi.org/10.1016/j.conengprac.2017.11.007

  • Yazdizadeh, A., Khorasani, K., & Patel, R. A. (2000). Identification of a two-Link flexible manipulator using adaptive time delay neural networks. IEEE Transactions on Systems Man and Cybernetics, 30(1), 165–172.

  • Yurkevich., V. D. (2011). Advances in PID control. IntechOpen. https://doi.org/10.5772/770

  • Yuwei, Y., Xinhua, Z., Minglu, Z., Guangzhu, M., & Shoujun, W. (2011). Study of dynamic transient stability of a 2-link wheeled-suspended mobile flexible manipulator. In 2011 Third International Conference on Measuring Technology and Mechatronics Automation (Vol. 3, pp. 397-400). IEEE Publishing. https://doi.org/10.1109/ICMTMA.2011.670

  • Zebin, T., & Alam, M. S. (2010). Dynamic modeling and fuzzy logic control of a two-link flexible manipulator using genetic optimization technique. In 2010 13th International Conference on Computer and Information Technology (ICCIT) (pp. 418-423). IEEE Publishing. https://doi.org/10.1155/2015/285730

  • Zhang, N., Feng, Y., & Yu, X. (2004). Optimization of terminal sliding control for two-link flexible manipulators. In 30th Annual Conference of IEEE Industrial Electronics Society, 2004 (Vol. 2, pp. 1318-1322). IEEE Publishing. https://doi.org/ 10.1109/IECON.2004.1431768

  • Zhang, Z., Ding, S., & Jia, W. (2019). A hybrid optimization algorithm based on cuckoo search and differential evolution for solving constrained engineering problems. Engineering Applications of Artificial Intelligence, 85, 254-268. https://doi.org/10.1016/j.engappai.2019.06.017