e-ISSN 2231-8526
ISSN 0128-7680
Dewi Maya Maharani, Nursigit Bintoro, Joko Nugroho Wahyu Karyadi and Arifin Dwi Saputro
Pertanika Journal of Science & Technology, Volume 32, Issue 5, August 2024
DOI: https://doi.org/10.47836/pjst.32.5.18
Keywords: Bell pepper, hypobaric storage, ozone, respiration, UV-C
Published on: 26 August 2024
Knowing the respiration rate of fresh products during storage is very important. One can use direct measurement or available prediction equations to determine the respiration rate. However, the availability of the prediction equations still needs to be improved. This study aims to develop mathematical models of respiration rate for pretreated bell peppers during hypobaric storage. Model development was done by applying dimensional analysis. Mature green bell peppers were used as the experimental samples. Three pretreatments on the bell pepper before storage, namely control, ozone pretreatment, and UV-C pretreatment, combined with three hypobaric storage levels of 26, 64, and 101 kPa, were studied. An apparatus set was built to create hypobaric conditions. An ozone generator and UV-C lamp were used to apply pretreatments to the samples. It was found that respiration rate models could be developed by considering bell pepper surface area, weight, volume, storage time, storage volume, and pressure. At the storage pressures of 101 to 56 kPa, UV-C pretreatment was the best in suppressing the respiration rate of bell pepper. Meanwhile, at a storage pressure of 26 kPa, the application of ozone and UV-C pretreatment gave a higher respiration rate than the control. The three models were found to have different characteristics and showed high accuracy with the experimental results. The dimensionless product of π3 was found to have the most significant effect on RCO2 for the three models. This finding indicated that the ratio between bell pepper and jar volumes is critical to ensure the model works.
Ali, A., Ong, M. K., & Forney, C. F. (2014). Effect of ozone pre-conditioning on quality and antioxidant capacity of papaya fruit during ambient storage. Food Chemistry, 142, 19-26. https://doi.org/10.1016/j.foodchem.2013.07.039
Allende, A., Mcevoy, J. L., Luo, Y., Artes, F., & Wang, C. Y. (2006). Effectiveness of two-sided UV-C treatments in inhibiting natural microflora and extending the shelf-life of minimally processed ‘Red Oak Leaf’ lettuce. Food Microbiology, 23(3), 241-249. https://doi.org/10.1016/j.fm.2005.04.009
An, D. S., Park, E., & Lee, D. S. (2009). Effect of hypobaric packaging on respiration and quality of strawberry and curled lettuce. Postharvest Biology and Technology, 52(1), 78-83. https://doi.org/10.1016/j.postharvbio.2008.09.014
Arya, K. S., Yadav, B. K., & Santhakumaran, A. (2016). Effect of temperature and ozone treatment on the respiration of oyster mushroom. International Journal of Agricultural Science and Research, 6(3), 377-388.
Asonye, U. G., Nwakuba, N. R., & Asoegwu, S. N. (2018). Numerical and experimental studies on the cutting energy requirements of okra (Abelmoschus Esculentus L.). Arid Zone Journal of Engineering, Technology & Environment, 14(SP.i4), 20-36.
Bosland, P. W., Votava, E. J., & Votava, E. M. (2012). Peppers: Vegetable and spice capsicums (2nd edition). Crop Production Science in Horticulture Series 22. CABI. https://www.cabidigitallibrary.org/doi/book/10.1079/9781845938253.0000 CABI.
Burg, S. P. (2014). Experimental errors in hypobaric storage research. In Hypobaric Storage in Food Industry (pp. 13-25). Academic Press. https://doi.org/10.1016/b978-0-12-419962-0.00002-4
Cao, S., Meng, L., Ma, C., Ba, L., Lei, J., Ji, N., & Wang, R. (2022). Effect of ozone treatment on physicochemical parameters and ethylene biosynthesis inhibition in Guichang Kiwifruit. Food Science and Technology, 42, Article e64820. https://doi.org/10.1590/fst.64820
Chen, C., Zhang, H., Zhang, X., Dong, C., Xue, W., & Xu, W. (2020). The effect of different doses of ozone treatments on the postharvest quality and biodiversity of cantaloupes. Postharvest Biology and Technology, 163, Article 111124. https://doi.org/10.1016/j.postharvbio.2020.111124
Chen, H., Yang, H., Gao, H., Long, J., Tao, F., Fang, X., & Jiang, Y. (2013). Effect of hypobaric storage on quality, antioxidant enzyme and antioxidant capability of the Chinese bayberry fruits. Chemistry Central Journal, 7, Article 4. https://doi.org/10.1186/1752-153X-7-4
Chen, H. Z., Zhang, M., Bhandari, B., & Guo, Z. (2018). Evaluation of the freshness of fresh-cut green bell pepper (Capsicum annuum var. grossum) using electronic nose. LWT-Food Science and Technology, 87, 77-84. https://doi.org/10.1016/j.lwt.2017.08.052
Collings, E. R., Gavidia, M. C. A., Cools, K., Redfern, S., & Terry, L. A. (2018). Effect of UV-C on the physiology and biochemical profile of fresh Piper nigrum berries. Postharvest Biology and Technology, 136, 161-165. https://doi.org/10.1016/j.postharvbio.2017.11.007
Cote, S., Rodoni, L., Miceli, E., Concellón, A., Civello, P. M., & Vicente, A. R. (2013). Effect of radiation intensity on the outcome of postharvest UV-C treatments. Postharvest Biology and Technology, 83, 83-89. https://doi.org/10.1016/j.postharvbio.2013.03.009
de Souza, L. P., Faroni, L. R. D. A., Heleno, F. F., Cecon, P. R., Gonçalves, T. D. C., Silva, G. J. da, & Prates, L. H. F. (2018). Effects of ozone treatment on postharvest carrot quality. LWT 90, 53-60. https://doi.org/10.1016/j.lwt.2017.11.057
Devanesan, J. N., Karuppiah, A., & Abirami, C. V. K. (2012). Effect of storage temperatures, O2 concentrations and variety on respiration of mangoes. Journal of Agrobiology, 28(2), 119-128. https://doi.org/10.2478/v10146-011-0013-8
Erkan, M., Yi, C., & Krizek, D. T. (2001). UV-C irradiation reduces microbial populations and deterioration in Cucurbita pepo fruit tissue. Environmental and Experimental Botany, 45(1), 1-9. https://doi.org/10.1016/S0098-8472(00)00073-3
Fauziah, P. Y., Bintoro, N., & Karyadi, J. N. W. (2020). Effect of ultraviolet-C treatments and storage room condition on the respiration rate, weight loss, and color change of Shallots (Allium ascalonicum L.) during storage. In IOP Conference Series: Earth and Environmental Science (Vol. 449, No. 1, p. 012021). IOP Publishing. https://doi.org/10.1088/1755-1315/449/1/012021
Fonseca, J. M., & Rushing, J. W. (2008). Application of ultraviolet light during postharvest handling of produce: Limitations and possibilities. Fresh Produce, 2(2), 41-46.
Fonseca, S. C., Oliveira, F. A. R., & Brecht, J. K. (2002). Modelling respiration rate of fresh fruits and vegetables for modified atmosphere packages: A review. Journal of Food Engineering, 52(2), 99-119. https://doi.org/10.1016/S0260-8774(01)00106-6
Frans, M., Aerts, R., Ceusters, N., Luca, S., & Ceusters, J. (2021). Possibilities of modified atmosphere packaging to prevent the occurrence of internal fruit rot in bell pepper fruit (Capsicum annuum) caused by Fusarium spp. Postharvest Biology and Technology, 178, Article 111545. https://doi.org/10.1016/j.postharvbio.2021.111545
Gaou, I., Dubois, M., Pfohl-Leszkowicz, A., Coste, C., De Jouffrey, S., & Parent-Massin, D. (2005). Safety of Oxygreen®, an ozone treatment on wheat grains. Part 1. A four-week toxicity study in rats by dietary administration of treated wheat. Food Additives and Contaminants, 22(11), 1113-1119. https://doi.org/10.1080/02652030500307156
García-Martín, J. F., Olmo, M., & García, J. M. (2018). Effect of ozone treatment on postharvest disease and quality of different citrus varieties at laboratory and at industrial facility. Postharvest Biology and Technology, 137, 77-85. https://doi.org/10.1016/j.postharvbio.2017.11.015
Gibbings, J. C. (2011). Dimensional analysis, 1st edition. Springer.
Gimeno, D., Gonzalez-Buesa, J., Oria, R., Venturini, M. E., & Arias, E. (2022). Effect of modified atmosphere packaging (MAP) and UV-C Irradiation on postharvest quality of red raspberries. Agriculture, 12(1), Article 29. https://doi.org/10.3390/agriculture12010029
Gomes, T., Canever, S. B., Savi, G. D., Piacentini, K. C., Cargnin, M., Furtado, B. G., Feltrin, A. C., Quadri, M. B., & Angioletto, E. (2020). Modeling and experimental of mould disinfestation of soybean silos with ozone. Ozone: Science and Engineering, 42(2), 183-193. https://doi.org/10.1080/01919512.2019.1630259
Gutiérrez, D. R., Chaves, A. R., & Rodríguez, S. del C. (2018). UV-C and ozone treatment influences on the antioxidant capacity and antioxidant system of minimally processed rocket (Eruca sativa Mill.). Postharvest Biology and Technology, 138, 107-113. https://doi.org/10.1016/j.postharvbio.2017.12.014
Han, Q., Gao, H., Chen, H., Fang, X., & Wu, W. (2017). Precooling and ozone treatments affects postharvest quality of black mulberry (Morus nigra) fruits. Food Chemistry, 221, 1947-1953. https://doi.org/10.1016/j.foodchem.2016.11.152
Hashmi, M. S., East, A. R., Palmer, J. S., & Heyes, J. A. (2014). Strawberries inoculated after hypobaric treatment exhibit reduced fungal decay suggesting induced resistance. Acta Horticulturae, 1053, 163-168. https://doi.org/10.17660/ActaHortic.2014.1053.16
Hassan, A. B., Al, S. A., Sir, K. A., Elbadr, N. A., Alsulaim, S., Osman, M. A., & Mohamed, I. A. (2020). Effect of UV-C radiation treatment on microbial load and antioxidant capacity in hot pepper, fennel and coriander. LWT, 134, Article 109946. https://doi.org/10.1016/j.lwt.2020.109946
Howard, L. R., Talcott, S. T., Brenes, C. H., & Villalon, B. (2000). Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum species) as influenced by maturity. Journal of Agricultural and Food Chemistry, 48(5), 1713-1720. https://doi.org/10.1021/jf990916t
Jimoh, M. O., Olukunle, O. J., & Manuwa, S. I. (2016). Modeling of cassava peeling performance using dimensional analysis. Agricultural Engineering International: CIGR Journal, 18(2), 360-367.
Kays, S. J. (1991). Metabolis processes in harvested products. In Postharvest Physiology of Perishable Plant Products (pp. 75-142). Van Nostrand Reinhold
Khawarizmi, M. A., & Phebe, D. (2018). Ozone application in fresh fruits and vegetables. Pertanika Journal of Scholarly Research Reviews, 4(2), 29-35.
Kim, N. Y., Lee, D. S., Lee, H. J., & An, D. S. (2012). Effect of UV-LED irradiation on respiration and ethylene production of cherry tomatoes. Food Science and Preservation, 19(1), 47-53. https://doi.org/10.11002/kjfp.2012.19.1.047
Kou, X., Wu, J. Y., Wang, Y., Chen, Q., Xue, Z., Bai, Y., & Zhou, F. (2016). Effects of hypobaric treatments on the quality, bioactive compounds, and antioxidant activity of tomato. Journal of Food Science, 81(7), H1816-H1824. https://doi.org/10.1111/1750-3841.13360
Kowalczyk, W., & Delgado, A. (2007). Dimensional analysis of thermo-fluid-dynamics of high hydrostatic pressure processes with phase transition. International Journal of Heat and Mass Transfer, 50(15-16), 3007-3018. https://doi.org/10.1016/j.ijheatmasstransfer.2006.12.004
Lewis, C. D. (1982). Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting. Butterworth Scientific.
Li, H., James, A., He, X., Zhang, M., Cai, Q., & Wang, Y. (2019). Effect of hypobaric treatment on the quality and reactive oxygen species metabolism of blueberry fruit at storage. CyTA - Journal of Food, 17(1), 937-948. https://doi.org/10.1080/19476337.2019.1674925
Li, W., Zhang, M., & Yu, H. Q. (2006). Study on hypobaric storage of green asparagus. Journal of Food Engineering, 73(3), 225-230. https://doi.org/10.1016/j.jfoodeng.2005.01.024
Lin, F., Lv, K., Ma, S., Wang, F., Li, J., & Wang, L. (2023). Effects of ozone treatment on storage quality and antioxidant capacity of fresh-cut water fennel [Oenanthe javanica]. Food Science and Technology, 43, 1-11. https://doi.org/10.1590/fst.108422
Lin, S., Chen, C., Luo, H., Xu, W., Zhang, H., Tian, J. J., Ju, R., & Wang, L. (2019). The combined effect of ozone treatment and polyethylene packaging on postharvest quality and biodiversity of Toona sinensis (A.Juss.) M.Roem. Postharvest Biology and Technology, 154(5), 1-10. https://doi.org/10.1016/j.postharvbio.2019.04.010
Loubière, C., Delafosse, A., Guedon, E., Chevalot, I., Toye, D., & Olmos, E. (2019). Dimensional analysis and CFD simulations of microcarrier ‘just-suspended’ state in mesenchymal stromal cells bioreactors. Chemical Engineering Science, 203, 464-474. https://doi.org/10.1016/j.ces.2019.04.001
Lv, Y., Tahir, I. I., & Olsson, M. E. (2019). Effect of ozone application on bioactive compounds of apple fruit during short-term cold storage. Scientia Horticulturae, 253, 49-60. https://doi.org/10.1016/j.scienta.2019.04.021
Ma, L., Wang, Q., Li, L., Grierson, D., Yuan, S., Zheng, S., Wang, Y., Wang, B., Bai, C., Fu, A., Gao, L., Zhu, B., Luo, Y., Mu, J., & Zuo, J. (2021). UV-C irradiation delays the physiological changes of bell pepper fruit during storage. Postharvest Biology and Technology, 180, Article 111506. https://doi.org/10.1016/j.postharvbio.2021.111506
Mabusela, B. P., Belay, Z. A., Godongwana, B., & Caleb, O. J. (2023). Impact of vacuum ultraviolet (VUV) photolysis on ethylene degradation kinetics and removal in mixed fruit storage , and direct exposure to ‘Fuji’ apples during storage. Journal of Food Science and Technology, 60, 2557-2567. https://doi.org/10.1007/s13197-023-05775-3
Moradi, M., Balanian, H., & Taherian, A. (2019). Physical and mechanical properties of three varieties of cucumber: A mathematical modeling. Journal of Food Process Engineering, 43,(2), Article e13323. https://doi.org/10.1111/jfpe.13323
Moradi, M., Niakosari, M., & Etemadi, A. (2016). Dimensionless modeling of thin layer drying process of aloe vera gel. Iranian Food Science and Technology, 12(3), 362-370.
Moreno, J. J. M., Pol, A. P., Abad, A. S., & Blasco, B. C. (2013). Using the R-MAPE index as a resistant measure of forecast accuracy. Psicothema, 25(4), 500-506. https://doi.org/10.7334/psicothema2013.23
Muhammad, A., Dayisoylu, K. S., Khan, H., Khan, M. R., Khan, I., Hussain, F., Basit, A., Ali, M., Khan, S., & Idrees, M. (2023). An integrated approach of hypobaric pressures and potassium permanganate to maintain quality and biochemical changes in tomato fruits. Horticulturae, 9(1), Article 9. https://doi.org/10.3390/horticulturae9010009
Lwin, N. T. N., Supapvanich, S., & Promyou, S. (2021). Ultraviolet-C irradiation maintaining texture and total sugars content of ready to cook baby corn during commercial storage. Food Science and Biotechnology, 30, 47-54. https://doi.org/10.1007/s10068-020-00854-z
Nwakuba, N. R., Ejesu, P. K., & Okafor, V. C. (2017). A mathematical model for predicting the drying rate of cocoa bean (Theobroma cacao L.) in a hot air dryer. Agricultural Engineering International: CIGR Journal, 19(3), 195-202.
Olmos, E., Loubiere, K., Martin, C., Delaplace, G., & Marc, A. (2015). Critical agitation for microcarrier suspension in orbital shaken bioreactors: Experimental study and dimensional analysis. Chemical Engineering Science, 122, 545-554. https://doi.org/10.1016/j.ces.2014.08.063
Ong, M. K., Ali, A., Alderson, P. G., & Forney, C. F. (2014). Effect of different concentrations of ozone on physiological changes associated to gas exchange, fruit ripening, fruit surface quality and defence-related enzymes levels in papaya fruit during ambient storage. Scientia Horticulturae, 179, 163-169. https://doi.org/10.1016/j.scienta.2014.09.004
Pexton, M. (2014). How dimensional analysis can explain. Synthese, 191(10), 2333-2351.
Rodoni, L. M., Zaro, M. J., Hasperué, J. H., Concellón, A., & Vicente, A. R. (2015). UV-C treatments extend the shelf life of fresh-cut peppers by delaying pectin solubilization and inducing local accumulation of phenolics. LWT-Food Science and Technology, 63(1), 408-414. https://doi.org/10.1016/j.lwt.2015.03.042
Rubatzky, V. E., & Yamaguchi, M. (2012). World vegetables: Principles, production, and nutritive values. Springer.
Saracoglu, T. (2018). Development of prediction models of selected hydrodynamic properties of plum fruit (Prunus domestica L) in water. International Journal of Engineering Science Invention, 7(5), 72-78.
Shintawati, Analianasari, & Zukryandry. (2020). Kinetika Ekstraksi Minyak Atsiri Lada Hitam (Piper nigrum) Secara Hidrodistilasi [Kinetics of Black Pepper (Piper nigrum) Essential Oil Extraction by Hydrodistillation]. Chemical Engineering Research Articles, 3(2), 63-70. https://dx.doi.org/10.25273/cheesa.v3i2.7388.63-70
Sonin, A. A. (2001). The physical basis of dimensional analysis (2nd ed.). Department of Mechanical Engineering, MIT.
Srilaong, Jitareerat, & Wongs-Aree (2014). Fumigation with ozone to extend the storage life of mango fruit cv nam dok mai no.4. Agricultural Science Journal, 44(2), 663-672.
Susmiati, Y. (2022). Pengembangan distilator untuk pemurnian bioetanol dengan modifikasi internal reboiler [Development of a bioethanol distillation process using a rectification distillation with an internally modified reboiler]. [Doctoral Dissertation]. Universitas Gadjah Mada, Indonesia.
Templalexis, C., Lentzou, D., Samioti, A., & Xanthopoulos, G. (2023). The individual and combined effect of ozone and UV-C on mass loss respiration, texture and colour changes of fresh-cut lettuce. Food Research, 7(3), 29-41. https://doi.org/DOI:10.26656/fr.2017.7(3).367
Thurairajasingam, E., Shayan, E., & Masood, S. (2002). Modelling of a continuous food pressing process by dimensional analysis. Computers and Industrial Engineering, 42(2-4), 343-351. https://doi.org/10.1016/S0360-8352(02)00025-6
Trombete, F. M., Porto, Y. D., Freitas-Silva, O., Pereira, R. V., Direito, G. M., Saldanha, T., & Fraga, M. E. (2017). Efficacy of ozone treatment on mycotoxins and fungal reduction in artificially contaminated soft wheat grains. Journal of Food Processing and Preservation, 41(3), Article e12927. https://doi.org/10.1111/jfpp.12927
Ustun, H., Ali, Q., Kurubas, M. S., Dogan, A., Balkhi, M., Peker, B., & Erkan, M. (2021). Influence of postharvest UV-C illumination on biochemical properties of green beans. Scientia Horticulturae, 289, Article 110499. https://doi.org/10.1016/j.scienta.2021.110499
Vicente, A. R., Pineda, C., Lemoine, L., Civello, P. M., Martinez, G. A., & Chaves, A. R. (2005). UV-C treatments reduce decay, retain quality and alleviate chilling injury in pepper. Postharvest Biology and Technology, 35(1), 69-78. https://doi.org/10.1016/j.postharvbio.2004.06.001
Vunnam, R., Hussain, A., Nair, G., Bandla, R., Gariepy, Y., Donnelly, D. J., Kubow, S., & Raghavan, G. S. V. (2014). Physico-chemical changes in tomato with modified atmosphere storage and UV treatment. Journal of Food Science and Technology, 51, 2106-2112. https://doi.org/10.1007/s13197-012-0690-3
Waghmare, R. B., Mahajan, P. V., & Annapure, U. S. (2013). Modelling the effect of time and temperature on respiration rate of selected fresh-cut produce. Postharvest Biology and Technology, 80, 25-30. https://doi.org/10.1016/j.postharvbio.2013.01.012
Wang, Z., & Dilley, D. R. (2000). Hypobaric storage removes scald-related volatiles during the low temperature induction of superficial scald of apples. Postharvest Biology and Technology, 18(3), 191-199. https://doi.org/10.1016/S0925-5214(99)00080-0
Yan, L., Zheng, H., Liu, W., Liu, C., Jin, T., Liu, S., & Zheng, L. (2021). UV-C treatment enhances organic acids and GABA accumulation in tomato fruits during storage. Food Chemistry, 338, Article 128126. https://doi.org/10.1016/j.foodchem.2020.128126
Yemmireddy, V., Adhikari, A., & Moreira, J. (2022). Effect of ultraviolet light treatment on microbiological safety and quality of fresh produce: An overview. Frontiers in Nutrition, 9, Article 871243. https://doi.org/10.3389/fnut.2022.871243
Zhang, W., & Jiang, W. (2019). UV treatment improved the quality of postharvest fruits and vegetables by inducing resistance. Trends in Food Science & Technology, 92, 71-80. https://doi.org/10.1016/j.tifs.2019.08.012
Zhou, H., Zhang, X., Su, M., Du, J., Li, X., & Ye, Z. (2020). Effects of ultraviolet-C pretreatment on sugar metabolism in yellow peaches during shelf life. HortScience, 55(4), 416-423. https://doi.org/10.21273/HORTSCI14554-19
ISSN 0128-7680
e-ISSN 2231-8526