e-ISSN 2231-8526
ISSN 0128-7680
Dalene Lesen, Elexson Nillian, Dayang Najwa Awang Baki and Tunung Robin
Pertanika Journal of Science & Technology, Volume 32, Issue 5, August 2024
DOI: https://doi.org/10.47836/pjst.32.5.17
Keywords: Microbial load, most probable number, multiplex PCR, shrimp farm, Vibrio spp.
Published on: 26 August 2024
Vibriosis in shrimp farms poses potential risks to the industry’s sustainability and the consumers’ health. Little is known about the dynamics and variation of Vibrio spp—population in shrimp production in Sarawak, Malaysia. The apparent prevalence of three Vibrio species, V. parahaemolyticus, V. cholerae, and V. alginolyticus, were investigated in water (n=12), sediment (n=12), shrimp (n=12), and effluent (n=12) samples collected from two ponds in a coastal shrimp farm during one production cycle. Multiplex-PCR using specific primer sets showed the presence of the three Vibrio species. Based on the results, V. parahaemolyticus was the most prevalent in all four samples, with a contamination rate of 97.92% (95% CI: 89. 10 to 99.89%), while V. cholerae and V. alginolyticus had a contamination rate of 47.92% (95% CI: 34.37 to 61.67%) and 25.0% (95% CI: 14.92 to 38.78%), respectively. High Vibrio load in the shrimp farm is due to favourable environmental factors, such as optimal temperatures, salinity, and pH ranges for the growth of these species. The study’s findings offer important preliminary insights into the prevalence and distribution of these pathogenic Vibrio spp., within a shrimp farm in Kuching, Sarawak. This study serves as a potential model for monitoring Vibrio spp. prevalence in other shrimp farms across Sarawak, thereby addressing the scarcity of data on prevalence in the region.
Alifia, F., Diba, D. F., Rusnita, & Basir, B. (2021). Conditions of clinical symptoms and life of Vaname shrimp in prevention of Vibrio alginolyticus infection using miana leaf extract. Journal of Fish Health, 1(2), 40–48. https://doi.org/10.29303/jfh.v1i2.230
Baker-Austin, C., Oliver, J. D., Alam, M., Ali, A., Waldor, M. K., Qadri, F., & Martinez-Urtaza, J. (2018). Vibrio spp. infections. Nature Reviews Disease Primers, 4(1), 1–19. https://doi.org/10.1038/s41572-018-0005-8
Blackwell, K. D., & Oliver, J. D. (2008). The ecology of Vibrio vulnificus, Vibrio cholerae, and Vibrio parahaemolyticus in North Carolina estuaries. The Journal of Microbiology, 46(2), 146–153. https://doi.org/10.1007/s12275-007-0216-2
Blodgett, R. (2000). BAM appendix 2: Most probable number from serial dilutions. U.S. Food & Drug Administration. https://www.fda.gov/food/laboratory-methods-food/bam-appendix-2-most-probable-number-serial-dilutions
Brown, S. P., Cornforth, D. M., & Mideo, N. (2012). Evolution of virulence in opportunistic pathogens: Generalism, plasticity, and control. Trends in Microbiology, 20(7), 336–342. https://doi.org/10.1016/j.tim.2012.04.005
Brumfield, K. D., Chen, A. J., Gangwar, M., Usmani, M., Hasan, N. A., Jutla, A. S., Huq, A., & Colwell, R. R. (2023). Environmental factors influencing occurrence of Vibrio parahaemolyticus and Vibrio vulnificus. Applied and Environmental Microbiology, 89(6), Article e00307-23. https://doi.org/10.1128/aem.00307-23
Caburlotto, G., Haley, B. J., Lleò, M. M., Huq, A., & Colwell, R. R. (2010). Serodiversity and ecological distribution of Vibrio parahaemolyticus in the Venetian Lagoon, Northeast Italy. Environmental Microbiology Reports, 2(1), 151–157. https://doi.org/10.1111/j.1758-2229.2009.00123.x
Cao, H., An, J., Zheng, W., & He, S. (2015). Vibrio cholerae pathogen from the freshwater-cultured whiteleg shrimp Penaeus vannamei and control with Bdellovibrio bacteriovorus. Journal of Invertebrate Pathology, 130, 13–20. https://doi.org/10.1016/j.jip.2015.06.002
Chen, Y., Ai, X., & Yang, Y. (2022). Vibrio cholerae: A pathogen shared by human and aquatic animals. The Lancet Microbe, 3(6), Article e402. https://doi.org/10.1016/s2666-5247(22)00125-2
Chu, Y. T., & Brown, P. B. (2021). Evaluation of Pacific Whiteleg shrimp and three halophytic plants in marine aquaponic systems under three salinities. Prime Archives in Sustainability, 13(1), Article 269. https://doi.org/10.37247/pas.1.2021.38
Colwell, R. R. (2004). Infectious disease and environment: Cholerae as a paradigm for waterborne disease. International Microbiology, 7(4), 285–289.
Department of Fisheries Malaysia. (2012). Annual Fisheries Statistics 2012. Ministry of Agriculture and Agro-Based Industry Malaysia
Dutta, D., Kaushik, A., Kumar, D., & Bag, S. (2021). Foodborne pathogenic Vibrios: Antimicrobial resistance. Frontiers in Microbiology, 12, Article 638331. https://doi.org/10.3389/fmicb.2021.638331
Farmer, J. J., & Janda, J. M. (2015). Vibrionaceae. In M. E. Trujillo, S. Dedysh, P. DeVos, B. Hedlund, P. Kämpfer, F. A. Rainey & W. B. Whitman (Eds.) Bergey’s Manual of Systematics of Archaea and Bacteria (pp. 1–7). American Cancer Society.
Faruque, S. M., & Nair, G. B. (2010). Cholerae toxins: A comprehensive review. Toxins, 2(1), 51-71.
Fernández-Delgado, M., García-Amado, M. A., Contreras, M., Incani, R. N., Chirinos, H., Rojas, H., & Suárez, P. (2015). Survival, induction and resuscitation of Vibrio cholerae from the viable but non-culturable state in the Southern Caribbean Sea. Revista Do Instituto De Medicina Tropical De São Paulo, 57(1), 21–26. https://doi.org/10.1590/s0036-46652015000100003
Gilbert, J. (2023, July 10). MAG plans to focus on downstream products. New Straits Times. https://www.nst.com.my/business/2023/07/929327/mag-plans-focus-downstream-products.
Givens, C. E., Bowers, J. C., DePaola, A., Hollibaugh, J. T., & Jones, J. L. (2014). Occurrence and distribution of Vibrio vulnificus and Vibrio parahaemolyticus - potential roles for fish, oyster, sediment and water. Letters in Applied Microbiology, 58(6), 503–510. https://doi.org/10.1111/lam.12226
Gopal, S., Otta, S. K., Kumar, S., Karunasagar, I., Nishibuchi, M., & Karunasagar, I. (2005). The occurrence of Vibrio species in tropical shrimp culture environments; Implications for Food Safety. International Journal of Food Microbiology, 102(2), 151–159. https://doi.org/10.1016/j.ijfoodmicro.2004.12.011
Gu, D., Guo, M., Yang, M., Zhang, Y., Zhou, X., & Wang, Q. (2016). A σe-mediated temperature gauge controls a switch from LUXR-mediated virulence gene expression to thermal stress adaptation in Vibrio alginolyticus. PLOS Pathogens, 12(6), Article e1005645. https://doi.org/10.1371/journal.ppat.1005645
Haifa-Haryani, W. O., Amatul-Samahah, Md. A., Azzam-Sayuti, M., Chin, Y. K., Zamri-Saad, M., Natrah, I., Amal, M. N., Satyantini, W. H., & Ina-Salwany, M. Y. (2022). Prevalence, antibiotics resistance and plasmid profiling of Vibrio spp. isolated from cultured shrimp in Peninsular Malaysia. Microorganisms, 10(9), Article 1851. https://doi.org/10.3390/microorganisms10091851
Haldar, S., Chatterjee, S., Asakura, M., Vijayakumaran, M., & Yamasaki, S. (2007). Isolation of Vibrio parahaemolyticus and Vibrio cholerae (Non-O1 and O139) from moribund shrimp (Penaeus Monodon) and experimental challenge study against post-larvae and juveniles. Annals of Microbiology, 57(1), 55–60. https://doi.org/10.1007/bf03175050
Harrison, J., Nelson, K., Morcrette, H., Morcrette, C., Preston, J., Helmer, L., Titball, R. W., Butler, C. S., & Wagley, S. (2022). The increased prevalence of Vibrio species and the first reporting of Vibrio jasicida and Vibrio rotiferianus at K.U.K. shellfish sites. Water Research, 211, Article 117942. https://doi.org/10.1016/j.watres.2021.117942
Horowitz, A., & Horowitz, S. (2020, November 24). Sludge: An obstacle to shrimp health - responsible seafood advocate. Global Seafood Alliance. https://www.aquaculturealliance.org/advocate/sludge-an-obstacle-to-shrimp-health/?headlessPrint=AAAAAPIA9c8r7gs82oWZBA
Janda, J. M., & Abbott, S. L. (2010). The genus Vibrio. In The Prokaryotes (pp. 639-702). Springer.
Kayser, O., & Kayser, Y. (2007). Acid stress in bacteria. FEMS Microbiology Reviews, 31(5), 577-608.
Kaysner, C. A., Abeyta, C., Stott, R. F., Krane, M. H., & Wekell, M. M. (1990). Enumeration of vibrio species, including V. cholerae, from samples of an oyster growing area, Grays Harbor, Washington. Journal of Food Protection, 53(4), 300–302. https://doi.org/10.4315/0362-028x-53.4.300.
Kaysner, C. A., DePaola, A., & Jones, J. (2004). BAM Chapter 9: Vibrio. U.S. Food and Drug Administration. https://www.fda.gov/food/laboratory-methods-food/bam-chapter-9-vibrio
Kieliszek, M., & Błażejowski, J. (2005). The influence of pH and temperature on the growth of Enterobacteriaceae. International Journal of Food Microbiology, 102(1), 1-10.
Kim, H. J., Ryu, J. O., Lee, S. Y., Kim, E. S., & Kim, H. Y. (2015). Multiplex PCR for detection of the Vibrio genus and five pathogenic Vibrio species with primer sets designed using comparative genomics. BMC Microbiology, 15(1), Article 239. https://doi.org/10.1186/s12866-015-0577-3
Kim, J. Y., & Lee, J. L. (2017). Correlation of total bacterial and Vibrio spp. populations between fish and water in the aquaculture system. Frontiers in Marine Science, 4, Article 147. https://doi.org/10.3389/fmars.2017.00147
Kim, W. R., Park, J. H., Lee, S. Y., & Kim, J. M. (2008). Effect of pH on the expression of virulence factors in Vibrio parahaemolyticus. Environmental Microbiology, 10(4), 873-880.
Kim, Y., Lee, S., Hwang, I., & Yoon, K. (2012). Effect of temperature on growth of Vibrio parahaemolyticus and Vibrio vulnificus in flounder, salmon sashimi and oyster meat. International Journal of Environmental Research and Public Health, 9(12), 4662–4675. https://doi.org/10.3390/ijerph9124662
Kua, B. C., Iar, A., Zahrah, A. S., Irene, J., Norazila, J., Haiha, N. Y. N., Fadzilah, Y., Mohammed, M., Rokhaiya, B. S., Omar, M., & Teoh, T. P. (2016, February 22-24). Current status of acute hepatopancreatic necrosis disease (AHPND) of farmed shrimp in Malaysia. [Paper presentation]. Proceedings of the ASEAN Regional Technical Consultation on EMS/AHPND and Other Transboundary Diseases for Improved Aquatic Animal Health in Southeast Asia, Makati City, Philippines.
Ling, S. (2022, September 7). Sarawak aims to export rm1bil worth of shrimp annually by 2030. The Star. https://www.thestar.com.my/news/nation/2022/09/07/sarawak-aims-to-export-rm1bil-worth-of-shrimp-annually-by-2030#:~:text=KUCHING%3A%20Sarawak%20aims%20to%20increase,worth%20of%20shrimp%20a%20year.
Logue, C. M., & Nde, C. W. (2017). Rapid microbiological methods in food diagnostics. In F. Toldrá & L. M. L. Nollet (Eds.), Advances in Food Diagnostics (pp. 153–185). Wiley.
Lokkhumlue, M., & Prakitchaiwattana, C. (2014). Influences of cultivation conditions on microbial profiles of Pacific white shrimp (Litopenaeus Vannamei) harvested from eastern and central Thailand. Chiang Mai University Journal of Natural Sciences, 13(1), 67-75. https://doi.org/10.12982/cmujns.2014.0022
Man, J. C. D. (1983). MPN tables, corrected. European Journal of Applied Biotechnology, 17, 301-305. https://doi.org/10.1007/BF00508025
Mastan, S. A., & Begum, S. K. A. (2016). Vibriosis in farm-reared white shrimp, Litopenaeus vannamei in Andhra Pradesh - Natural occurrence and artificial challenge. International Journal of Applied Sciences and Biotechnology, 4(2), 217–222. https://doi.org/10.3126/ijasbt.v4i2.15126
McLaren, M. R., & Callahan, B. J. (2020). Pathogen resistance may be the principal evolutionary advantage provided by the microbiome. Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1808), Article 20190592. https://doi.org/10.1098/rstb.2019.0592
Miwa, N., Nishio, T., Arita, Y., Kawamori, F., Masuda, T., & Akiyama, M. (2003). Evaluation of MPN method combined with PCR procedure for detection and enumeration of Vibrio parahaemolyticus in seafood. Journal of the Food Hygienic Society of Japan (Shokuhin Eiseigaku Zasshi), 44(6), 289–293. https://doi.org/10.3358/shokueishi.44.289
NACA. (2012). Report of the Asia Pacific emergency regional consultation on the emerging shrimp disease: Early mortality syndrome (EMS)/ acute hepatopancreatic necrosis syndrome (AHPNS). Network of Aquaculture Centres in Asia-Pacific. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://library.enaca.org/Health/Publication/ahpns-emergency-consultation-report.pdf
Newman, S. G. (2022). An update on vibriosis, the major bacterial disease shrimp farmers face - Responsible seafood advocate. Global Seafood Alliance. https://www.globalseafood.org/advocate/an-update-on-vibriosis-the-major-bacterial-disease-shrimp-farmers-face/
Nhu, N. T., Lee, J. S., Wang, H. J., & Dufour, Y. S. (2021). Alkaline pH increases swimming speed and facilitates mucus penetration for Vibrio cholerae. Journal of Bacteriology, 203(7), Article e00607-20. https://doi.org/10.1128/jb.00607-20
Patel, J., Grab, S., & De Maayer, P. (2023). Distinct microbial communities across a climatically versatile summit in the lesotho highlands. Ecology and Evolution, 13(3), Article e9891. https://doi.org/10.1002/ece3.9891
Queipo-Ortuño, M. I., Colmenero, J. D. D., Macias, M., Bravo, M. J., & Morata, P. (2008). Preparation of bacterial DNA template by boiling and effect of immunoglobulin G as an inhibitor in real-time PCR for serum samples from patients with brucellosis. Clinical and Vaccine Immunology, 15(2), 293–296. https://doi.org/10.1128/cvi.00270-07
Ravel, J., Knight, I. T., Monahan, C. E., Hill, R. T., & Colwell, R. R. (1995). Temperature-induced recovery of Vibrio cholerae from the viable but nonculturable state: Growth or resuscitation? Microbiology, 141(2), 377–383. https://doi.org/10.1099/13500872-141-2-377
Ross, T., & Schreiber, M. (1998). Vibrio species in the natural environment. Annual Review of Microbiology, 52(1), 547-570.
Ruiz-Cayuso, J., Trujillo-Soto, T., Rodriguez-Iglesias, M., & Almagro-Moreno, S. (2021). Effects of temperature and salinity interaction on Vibrio spp. and Vibrio parahaemolyticus in the intercontinental Euro-African Atlantic. Research Square, 2021, 1–17. https://doi.org/10.21203/rs.3.rs-607386/v1
Russo, P., Botticella, G., Capozzi, V., Massa, S., Spano, G., & Beneduce, L. (2014). A fast, reliable, and sensitive method for detection and quantification of Listeria monocytogenes and Escherichia coli O157:H7 in ready-to-eat fresh-cut products by MPN-QPCR. BioMed Research International, 2014(1), Article 608296. https://doi.org/10.1155/2014/608296
Sampaio, A., Silva, V., Poeta, P., & Aonofriesei, F. (2022). Vibrio spp.: Life strategies, ecology, and risks in a changing environment. Diversity, 14(2), Article 97. https://doi.org/10.3390/d14020097
Sani, N. A., Ariyawansa, S., Babji, A. S., & Hashim, J. K. (2013). The risk assessment of Vibrio parahaemolyticus in cooked black tiger shrimps (Penaeus Monodon) in Malaysia. Food Control, 31(2), 546–552. https://doi.org/10.1016/j.foodcont.2012.10.018
Semenza, J. C., Trinanes, J., Lohr, W., Sudre, B., Löfdahl, M., Martinez-Urtaza, J., Nichols, G. L., & Rocklöv, J. (2017). Environmental suitability of Vibrio infections in a warming climate: An early warning system. Environmental Health Perspectives, 125(10), Article 107004. https://doi.org/10.1289/ehp2198
Sheikh, H. I., Najiah, M., Fadhlina, A., Laith, A. A., Nor, M. M., Jalal, K. C., & Kasan, N. A. (2022). Temperature upshift mostly but not always enhances the growth of Vibrio species: A systematic review. Frontiers in Marine Science, 9, Article 959830. https://doi.org/10.3389/fmars.2022.959830
Song, X., Zang, J., Yu, W., Shi, X., & Wu, Y. (2020). Occurrence and identification of pathogenic vibrio contaminants in common seafood available in a Chinese traditional market in Qingdao, Shandong Province. Frontiers in Microbiology, 11, Article 1488. https://doi.org/10.3389/fmicb.2020.01488
Suzuki, K., Ushijima, K., Ito, T., & Ono, T. (2014). Environmental pH affects growth and virulence factors of Vibrio parahaemolyticus. Applied and Environmental Microbiology, 80(10), 3109-3116.
Thornstenson, C. A., & Ullrich, M. S. (2021). Ecological fitness of Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus in a small-scale population dynamics study. Frontiers in Marine Science, 8, Article 623988. https://doi.org/10.3389/fmars.2021.623988
To, T. T. H., Yanagawa, H., Thuan, N. K., Hiep, D. M., Cuong, D. V., Khai, T. L., Taniguchi, T., Kubo, R., & Hayashidani, H. (2020). Prevalence of vibrio parahaemolyticus causing acute hepatopancreatic necrosis disease of shrimp in shrimp, molluscan shellfish and water samples in the Mekong Delta, Vietnam. Biology, 9(10), Article 312. https://doi.org/10.3390/biology9100312
Valente, C. D. S., & Wan, A. H. L. (2021). Vibrio and major commercially important vibriosis diseases in decapod crustaceans. Journal of Invertebrate Pathology, 181, Article 107527. https://doi.org/10.1016/j.jip.2020.107527
Vezzulli, L., Grande, C., Reid, P. C., Hélaouët, P., Edwards, M., Höfle, M. G., Brettar, I., Colwell, R. R., & Pruzzo, C. (2016). Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proceedings of the National Academy of Sciences, 113(34), E5062-E5071. https://doi.org/10.1073/pnas.1609157113
Weber, G. G., & Klose, K. E. (2011). The complexity of ToxT-dependent transcription in Vibrio cholerae. Indian Journal of Medical Research, 133(2), 201-206.
Whitaker, W. B., Parent, M. A., Naughton, L. M., Richards, G. P., Blumerman, S. L., & Boyd, E. F. (2010). Modulation of responses of Vibrio parahaemolyticus O3:K6 to pH and temperature stresses by growth at different salt concentrations. Applied and Environmental Microbiology, 76(14), 4720–4729. https://doi.org/10.1128/aem.00474-10
Williams, N. L., Siboni, N., King, W. L., Balaraju, V., Bramucci, A., & Seymour, J. R. (2022). Latitudinal dynamics of Vibrio along the eastern coastline of Australia. Water, 14(16), Article 2510. https://doi.org/10.3390/w14162510
ISSN 0128-7680
e-ISSN 2231-8526