PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 32 (4) Jul. 2024 / JST-4579-2023

 

The Green Energy Effect on an HCCI Engine from Used Cooking Oil-based Biodiesel from Malaysia

Muntasser Abdulabbas Mossa, Abdul Aziz Hairuddin, Nuraini Abdul Aziz and Hasyuzariza Muhamad Tobib

Pertanika Journal of Science & Technology, Volume 32, Issue 4, July 2024

DOI: https://doi.org/10.47836/pjst.32.4.07

Keywords: Biodiesel, CI engine, emissions, HCCI, UCO

Published on: 25 July 2024

Emissions from internal combustion engines (ICEs) significantly impact the environment, leading continents worldwide to work towards reducing them. The industry is increasingly leaning towards electric powertrains. However, power plants still utilize ICEs as generators, contributing to global pollution. Consequently, ICE emissions are garnering international attention. Alternatives like the Homogeneous Charge Compression Ignition (HCCI) engine and biodiesel fuels are being explored. HCCI engines have not been extensively tested with Used Cooking Oil (UCO) biodiesel. This study investigates the performance and emissions of HCCI engines using UCO-based biodiesel. This study tested an air-cooled, single-cylinder, 4-stroke diesel engine operating at 3600 rpm with a displacement of 0.219 liters. The HCCI mode was activated during preheating and run at 2700 rpm under varying biodiesel blend percentages and intake temperatures. In HCCI mode, brake-specific fuel consumption (BSFC) increased, peaking at a 90°C intake temperature. Diesel fuel in-cylinder pressure reached a maximum of 81 bars at 90°C, decreasing to 79 bars at 70°C. The HCCI mode resulted in lower NOx, CO, and UHC emissions. Higher biodiesel blend ratios further reduced CO emissions. Raising the intake air temperature to 90°C lowered NOx emissions by 96.66%, from 150 ppm to 5 ppm. Using green energy sources as fuel in HCCI engines significantly reduced emissions in this study, suggesting their potential as a future fuel for advanced engines.

  • Abed, K. A., El Morsi, A. K., Sayed, M. M., El Shaib, A. A., & Gad, M. S. (2018). Effect of waste cooking-oil biodiesel on performance and exhaust emissions of a diesel engine. Egyptian Journal of Petroleum, 27(4), 985-989. https://doi.org/10.1016/j.ejpe.2018.02.008

  • Adam, A., Ramlan, N. A., Jaharudin, N. F., Hamzah, H., Othman, M. F., & Mrwan, A. A. G. (2017). Analysis of combustion characteristics, engine performance and exhaust emissions of diesel engine fueled with upgraded waste source fuel. International Journal of Hydrogen Energy, 42(28), 17993-18004. https://doi.org/10.1016/j.ijhydene.2017.04.021

  • Ali, S. A., Hunagund, S., Hussain, S. S., & Bagwan, A. H. (2021). The effect of nanoparticles dispersed in waste cooking oil (WCO) biodiesel on thermal performance characteristics of VCR engine. Materials Today: Proceedings, 43(2), 888-891. https://doi.org/10.1016/j.matpr.2020.07.214

  • Au, M. Y., Girard, J. W., Dibble, R., Flowers, D., Aceves, S. M., Martinez-Frias, J., Smith, R., Seibel, C., & Maas, U. (2001). 1.9-liter four-cylinder HCCI engine operation with exhaust gas recirculation (No. 2001-01-1894). SAE Technical Paper. https://doi.org/10.4271/2001-01-1894

  • Banapurmath, N. R., Tewari, P. G., & Hosmath, R. S. (2008). Performance and emission characteristics of a DI compression ignition engine operated on Honge, Jatropha and sesame oil methyl esters. Renewable Energy, 33(9), 1982-1988. https://doi.org/10.1016/j.renene.2007.11.012

  • Banerjee, R., Debbarma, B., Roy, S., Chakraborti, P., & Bose, P. K. (2016). An experimental investigation on the potential of hydrogen–biohol synergy in the performance-emission trade-off paradigm of a diesel engine. International Journal of Hydrogen Energy, 41(5), 3712-3739. https://doi.org/10.1016/j.ijhydene.2015.12.140

  • Bedoya, I. D., Saxena, S., Cadavid, F. J., Dibble, R. W., & Wissink, M. (2012). Experimental study of biogas combustion in an HCCI engine for power generation with high indicated efficiency and ultra-low NOx emissions. Energy Conversion and Management, 53(1), 154-162. https://doi.org/10.1016/j.enconman.2011.08.016

  • Channapattana, S. V., Campli, S., Madhusudhan, A., Notla, S., Arkerimath, R., & Tripathi, M. K. (2023). Energy analysis of DI-CI engine with nickel oxide nanoparticle added azadirachta indica biofuel at different static injection timing based on exergy. Energy, 267, Article 126622. https://doi.org/10.1016/j.energy.2023.126622

  • Christensen, M., Hultqvist, A., & Johansson, B. (1999). Demonstrating the multi fuel capability of a homogeneous charge compression ignition engine with variable compression ratio. Journal of Engines, 108(3), 2099-2113. https://doi.org/10.4271/1999-01-3679

  • Christensen, M., & Johansson, B. (1998). Influence of mixture quality on homogeneous charge compression ignition. Journal of Fuels and Lubricants, 107(4), 951-963. https://doi.org/10.4271/982454

  • Cinar, C., Uyumaz, A., Solmaz, H., Sahin, F., Polat, S., & Yilmaz, E. (2015). Effects of intake air temperature on combustion, performance and emission characteristics of a HCCI engine fueled with the blends of 20% n-heptane and 80% isooctane fuels. Fuel Processing Technology, 130, 275-281. https://doi.org/10.1016/j.fuproc.2014.10.026

  • Dharma, S., Ong, H. C., Masjuki, H. H., Sebayang, A. H., & Silitonga, A. S. (2016). An overview of engine durability and compatibility using biodiesel–bioethanol–diesel blends in compression-ignition engines. Energy Conversion and Management, 128, 66-81. https://doi.org/10.1016/j.enconman.2016.08.072

  • EL-Seesy, A. I., Waly, M. S., He, Z., El-Batsh, H. M., Nasser, A., & El-Zoheiry, R. M. (2021). Influence of quaternary combinations of biodiesel/methanol/n-octanol/diethyl ether from waste cooking oil on combustion, emission, and stability aspects of a diesel engine. Energy Conversion and Management, 240, Article 114268. https://doi.org/10.1016/j.enconman.2021.114268

  • Etaiw, S. E. H., Elkelawy, M., Elziny, I., Taha, M., Veza, I., & Bastawissi, H. A. E. (2022). Effect of nanocomposite SCP1 additive to waste cooking oil biodiesel as fuel enhancer on diesel engine performance and emission characteristics. Sustainable Energy Technologies and Assessments, 52(Part C), Article 102291. https://doi.org/10.1016/j.seta.2022.102291

  • Fahd, M. E. A., Wenming, Y., Lee, P. S., Chou, S. K., & Yap, C. R. (2013). Experimental investigation of the performance and emission characteristics of direct injection diesel engine by water emulsion diesel under varying engine load condition. Applied Energy, 102, 1042-1049. https://doi.org/10.1016/j.apenergy.2012.06.041

  • Gad, M. S., EL-Seesy, A. I., Radwan, A., & He, Z. (2020). Enhancing the combustion and emission parameters of a diesel engine fueled by waste cooking oil biodiesel and gasoline additives. Fuel, 269, Article 117466. https://doi.org/10.1016/j.fuel.2020.117466

  • Gad, M., & Ismail, M. A. (2021). Effect of waste cooking oil biodiesel blending with gasoline and kerosene on diesel engine performance, emissions and combustion characteristics. Process Safety and Environmental Protection, 149, 1-10. https://doi.org/10.1016/j.psep.2020.10.040

  • Ganesh, D., & Nagarajan, G. (2010). Homogeneous charge compression ignition (HCCI) combustion of diesel fuel with external mixture formation. Energy, 35(1), 148-157. https://doi.org/10.1016/j.energy.2009.09.005

  • Ganesh, D., Nagarajan, G., & Ibrahim, M. M. (2008). Study of performance, combustion and emission characteristics of diesel homogeneous charge compression ignition (HCCI) combustion with external mixture formation. Fuel, 87(17-18), 3497-3503. https://doi.org/10.1016/j.fuel.2008.06.010

  • Garcia, M. T., Aguilar, F. J. J. E., Villanueva, J. A. B., & Trujillo, E. C. (2011). Analysis of a new analytical law of heat release rate (HRR) for homogenous charge compression ignition (HCCI) combustion mode versus analytical parameters. Applied Thermal Engineering, 31(4), 458-466. https://doi.org/10.1016/j.applthermaleng.2010.09.025

  • Geng, P., Mao, H., Zhang, Y., Wei, L., You, K., Ju, J., & Chen, T. (2017). Combustion characteristics and NOx emissions of a waste cooking oil biodiesel blend in a marine auxiliary diesel engine. Applied Thermal Engineering, 115, 947-954. https://doi.org/10.1016/j.applthermaleng.2016.12.113

  • Gharehghani, A. (2019). Load limits of an HCCI engine fueled with natural gas, ethanol, and methanol. Fuel, 239, 1001-1014. https://doi.org/10.1016/j.fuel.2018.11.066

  • Ghorbanpour, M., & Rasekhi, R. (2013). A parametric investigation of HCCI combustion to reduce emissions and improve efficiency using a CFD model approach. Fuel, 106, 157-165. https://doi.org/10.1016/j.fuel.2012.12.008

  • Giakoumis, E. G., Rakopoulos, C. D., Dimaratos, A. M., & Rakopoulos, D. C. (2012). Exhaust emissions of diesel engines operating under transient conditions with biodiesel fuel blends. Progress in Energy and Combustion Science, 38(5), 691-715. https://doi.org/10.1016/j.pecs.2012.05.002

  • Godiño, J. A. V., Aguilar, F. J. J. E., & García, M. T. (2018). Simulation of HCCI combustion in air-cooled off-road engines fuelled with diesel and biodiesel. Journal of the Energy Institute, 91(4), 549-562. https://doi.org/10.1016/j.joei.2017.04.002

  • Gowthaman, S., & Sathiyagnanam, A. P. (2016). Effects of charge temperature and fuel injection pressure on HCCI engine. Alexandria Engineering Journal, 55(1), 119-125. https://doi.org/10.1016/j.aej.2015.12.025

  • Gray, A. B., & Ryan, T (1997). Homogeneous charge compression ignition (HCCI) of diesel fuel. Journal of Engines, 106(3), 1927-1935. https://doi.org/10.4271/971676

  • Hasan, M. M., Rahman, M. M., & Kadirgama, K. (2015). A review on homogeneous charge compression ignition engine performance using biodiesel-diesel blend as a fuel. International Journal of Automotive & Mechanical Engineering, 11, 2199-2211. https://doi.org/10.15282/ijame.11.2015.3.0184

  • Hasan, M. M., & Rahman, M. M. (2016). Homogeneous charge compression ignition combustion: Advantages over compression ignition combustion, challenges and solutions. Renewable and Sustainable Energy Reviews, 57, 282-291. https://doi.org/10.1016/j.rser.2015.12.157

  • How, H. G., Masjuki, H. H., Kalam, M. A., & Teoh, Y. H. (2018). Influence of injection timing and split injection strategies on performance, emissions, and combustion characteristics of diesel engine fueled with biodiesel blended fuels. Fuel, 213, 106-114. https://doi.org/10.1016/j.fuel.2017.10.102

  • Hunicz, J., Geca, M. S., Kordos, P., & Komsta, H. (2015). An experimental study on a boosted gasoline HCCI engine under different direct fuel injection strategies. Experimental Thermal and Fluid Science, 62, 151-163. https://doi.org/10.1016/j.expthermflusci.2014.12.014

  • Hwang, J., Bae, C., & Gupta, T. (2016). Application of waste cooking oil (WCO) biodiesel in a compression ignition engine. Fuel, 176, 20-31. https://doi.org/10.1016/j.fuel.2016.02.058

  • Iwashiro, Y., Tsurushima, T., Nishijima, Y., Asaumi, Y., & Aoyagi, Y. (2002). Fuel consumption improvement and operation range expansion in HCCI by direct water injection. (No. 2002-01-0105). SAE Technical Paper. https://doi.org/10.4271/2002-01-0105

  • Jafarmadar, S., & Nemati, P. (2016). Exergy analysis of diesel/biodiesel combustion in a homogenous charge compression ignition (HCCI) engine using three-dimensional model. Renewable Energy, 99, 514-523. https://doi.org/10.1016/j.renene.2016.07.034

  • Jafarmadar, S., & Nemati, P. (2017). Multidimensional modeling of the effect of exhaust gas recirculation on exergy terms in a homogenous charge compression ignition engine fueled by diesel/biodiesel. Journal of Cleaner Production, 161, 720-734. https://doi.org/10.1016/j.jclepro.2017.05.182

  • Janecek, D., Rothamer, D., & Ghandhi, J. (2017). Investigation of cetane number and octane number correlation under homogenous-charge compression-ignition engine operation. Proceedings of the Combustion Institute, 36(3), 3651-3657. https://doi.org/10.1016/j.proci.2016.08.015

  • Jiménez-Espadafor, F. J. J., Torres, M., Velez, J. A., Carvajal, E., & Becerra, J. A. (2012). Experimental analysis of low temperature combustion mode with diesel and biodiesel fuels: A method for reducing NOx and soot emissions. Fuel Processing Technology, 103, 57-63. https://doi.org/10.1016/j.fuproc.2011.11.014

  • Khandal, S. V., Banapurmath, N. R., & Gaitonde, V. N. (2019). Performance studies on homogeneous charge compression ignition (HCCI) engine powered with alternative fuels. Renewable Energy, 132, 683-693. https://doi.org/10.1016/j.renene.2018.08.035

  • Khayum, N., Anbarasu, S., & Murugan, S. (2021). Optimization of fuel injection parameters and compression ratio of a biogas fueled diesel engine using methyl esters of waste cooking oil as a pilot fuel. Energy, 221, Article 119865. https://doi.org/10.1016/j.energy.2021.119865

  • Kimura, S., Aoki, O., Kitahara, Y., & Aiyoshizawa, E. (2001). Ultra-clean combustion technology combining a low-temperature and premixed combustion concept for meeting future emission standards. Journal of Fuels and Lubricants, 110(4), 239-246. https://doi.org/10.4271/2001-01-0200

  • Krishnamoorthy, V., Dhanasekaran, R., Rana, D., Saravanan, S., & Kumar, B. R. (2018). A comparative assessment of ternary blends of three bio-alcohols with waste cooking oil and diesel for optimum emissions and performance in a CI engine using response surface methodology. Energy Conversion and Management, 156, 337-357. https://doi.org/10.1016/j.enconman.2017.10.087

  • Kumar, P., & Rehman, A. (2016). Bio-diesel in homogeneous charge compression ignition (HCCI) combustion. Renewable and Sustainable Energy Reviews, 56, 536-550. https://doi.org/10.1016/j.rser.2015.11.088

  • Li, H., Zhang, F., Feng, Z., Li, W., & Zou, X. (2021). Study on waste engine oil and waste cooking oil on performance improvement of aged asphalt and application in reclaimed asphalt mixture. Construction and Building Materials, 276, Article 122138. https://doi.org/10.1016/j.conbuildmat.2020.122138

  • Mancaruso, E., & Vaglieco, B. M. (2010). Optical investigation of the combustion behaviour inside the engine operating in HCCI mode and using alternative diesel fuel. Experimental Thermal and Fluid Science, 34(3), 346-351. https://doi.org/10.1016/j.expthermflusci.2009.10.010

  • Mase, Y., Kawashima, J., Sato, T., & Eguchi, M. (1998). Nissan’s new multivalve DI diesel engine series. Journal of Engines, 107(3), 1537-1546. https://doi.org/10.4271/981039

  • Muhamad Tobib, H., Hairuddin, A. A., Abdul Aziz, N., Al Anbagi, M., Md Noor, M., & Ayob, S. (2021). An experimental study of the performance of a homogeneous charge compression ignition (HCCI) engine fueled with palm oil-based biodiesel. Automotive Science and Engineering, 11(2), 3602-3625. http://doi.org/10.22068/ase.2021.548

  • Nalgundwar, A., Paul, B., & Sharma, S. K. (2016). Comparison of performance and emissions characteristics of DI CI engine fueled with dual biodiesel blends of palm and jatropha. Fuel, 173, 172-179. https://doi.org/10.1016/j.fuel.2016.01.022

  • No, S. Y. (2016). Application of biobutanol in advanced CI engines–A review. Fuel, 183, 641-658. https://doi.org/10.1016/j.fuel.2016.06.121

  • Noh, H. K., & No, S. Y. (2017). Effect of bioethanol on combustion and emissions in advanced CI engines: HCCI, PPC and GCI mode–A review. Applied Energy, 208, 782-802. https://doi.org/10.1016/j.apenergy.2017.09.071

  • Ogawa, H., Miyamoto, N., Kaneko, N., & Ando, H. (2003). Combustion control and operating range expansion with direct injection of reaction suppressors in a premixed DME HCCI engine (No. 2003-01-0746). SAE Technical Paper. https://doi.org/10.4271/2003-01-0746

  • Özer, S., Akcay, M., & Vural, E. (2021). Effect of toluene addition to waste cooking oil on combustion characteristics of a CI engine. Fuel, 303, Article 121284. https://doi.org/10.1016/j.fuel.2021.121284

  • Puhan, S., Vedaraman, N., Ram, B. V. B., Sankarnarayanan, G., & Jeychandran, K. (2005). Mahua oil (Madhuca Indica seed oil) methyl ester as biodiesel-preparation and emission characterstics. Biomass and Bioenergy, 28(1), 87-93. https://doi.org/10.1016/j.biombioe.2004.06.002

  • Puškár, M., & Kopas, M. (2018). System based on thermal control of the HCCI technology developed for reduction of the vehicle NOX emissions in order to fulfil the future standard Euro 7. Science of the Total Environment, 643, 674-680. https://doi.org/10.1016/j.scitotenv.2018.06.082

  • Putrasari, Y., Jamsran, N., & Lim, O. (2017). An investigation on the DME HCCI autoignition under EGR and boosted operation. Fuel, 200, 447-457. https://doi.org/10.1016/j.fuel.2017.03.074

  • Rahbari, A. (2016). Effect of inlet temperature and equivalence ratio on HCCI engine performance fuelled with ethanol: Numerical investigation. Journal of Central South University, 23, 122-129. https://doi.org/10.1007/s11771-016-3055-7

  • Rajesh, A., Gopal, K., Victor, D. P. M., Kumar, B. R., Sathiyagnanam, A. P., & Damodharan, D. (2020). Effect of anisole addition to waste cooking oil methyl ester on combustion, emission and performance characteristics of a DI diesel engine without any modifications. Fuel, 278, Article 118315. https://doi.org/10.1016/j.fuel.2020.118315

  • Rashed, M. M., Kalam, M. A., Masjuki, H. H., Mofijur, M., Rasul, M. G., & Zulkifli, N. W. M. (2016). Performance and emission characteristics of a diesel engine fueled with palm, jatropha, and moringa oil methyl ester. Industrial Crops and Products, 79, 70-76. https://doi.org/10.1016/j.indcrop.2015.10.046

  • Riyadi, T. W. B., Spraggon, M., Herawan, S. G., Idris, M., Paristiawan, P. A., Putra, N. R., Faizullizam R, M., Silambarasan, R., & Veza, I. (2023). Biodiesel for HCCI engine: Prospects and challenges of sustainability biodiesel for energy transition. Results in Engineering, 17, Article 100916. https://doi.org/10.1016/j.rineng.2023.100916

  • Rizvi, S. Q. (2009). Chapter 4: Lubricant Additives. In S. Rizvi (Ed.), A Comprehensive Review of Lubricant Chemistry, Technology, Selection, and Design (pp. 100-211). ASTM International. https://doi.org/10.1520/mnl11464m

  • Sahu, T. K., Sarkar, S., & Shukla, P. C. (2021). Combustion investigation of waste cooking oil (WCO) with varying compression ratio in a single cylinder CI engine. Fuel, 283, Article 119262. https://doi.org/10.1016/j.fuel.2020.119262

  • Sanjid, A., Masjuki, H. H., Kalam, M. A., Rahman, S. M. A., Abedin, M. J., & Palash, S. M. (2013). Impact of palm, mustard, waste cooking oil and Calophyllum inophyllum biofuels on performance and emission of CI engine. Renewable and Sustainable Energy Reviews, 27, 664-682. https://doi.org/10.1016/j.rser.2013.07.059

  • Satyanarayana, P. A., Oleti, R. K., Uppalapati, S., & Sridevi, V. (2018). A comparative study on characterization of used cooking oil and mustard oil for biodiesel production: Engine performance. Materials Today: Proceedings, 5(9), 18187-18201. https://doi.org/10.1016/j.matpr.2018.06.155

  • Shi, L., Cui, Y., Deng, K., Peng, H., & Chen, Y. (2006). Study of low emission homogeneous charge compression ignition (HCCI) engine using combined internal and external exhaust gas recirculation (EGR). Energy, 31(14), 2665-2676. https://doi.org/10.1016/j.energy.2005.12.005

  • Singh, A. P., & Agarwal, A. K. (2012). Combustion characteristics of diesel HCCI engine: an experimental investigation using external mixture formation technique. Applied Energy, 99, 116-125. https://doi.org/10.1016/j.apenergy.2012.03.060

  • Singh, D., Sharma, D., Soni, S. L., Inda, C. S., Sharma, S., Sharma, P. K., & Jhalani, A. (2021). A comprehensive review of biodiesel production from waste cooking oil and its use as fuel in compression ignition engines: 3rd generation cleaner feedstock. Journal of Cleaner Production, 307, Article 127299. https://doi.org/10.1016/j.jclepro.2021.127299

  • Singh, G., Singh, A. P., & Agarwal, A. K. (2014). Experimental investigations of combustion, performance and emission characterization of biodiesel fuelled HCCI engine using external mixture formation technique. Sustainable Energy Technologies and Assessments, 6, 116-128. https://doi.org/10.1016/j.seta.2014.01.002

  • Singh, V. P., Tiwari, S. K., Singh, R., & Kumar, N. (2017). Modification in combustion chamber geometry of CI engines for suitability of biodiesel: A review. Renewable and Sustainable Energy Reviews, 79, 1016-1033. https://doi.org/10.1016/j.rser.2017.05.116

  • Sivarethinamohan, S., Hanumanthu, J. R., Gaddam, K., Ravindiran, G., & Alagumalai, A. (2022). Towards sustainable biodiesel production by solar intensification of waste cooking oil and engine parameter assessment studies. Science of the Total Environment, 804, Article 150236. https://doi.org/10.1016/j.scitotenv.2021.150236

  • Srinidhi, C., Kshirsagar, P., Joshi, M., Kulkarni, A., Channapattana, S. V., Madhusudan, A., Aithal, K., & Gawali, S. (2022). Effect of fuel injection timing on CI engine fuelled with neem biodiesel blends–a comparative study of experimental and numerical simulation. International Journal of Energy and Environmental Engineering, 13, 395-406. https://doi.org/10.1007/s40095-021-00429-6

  • Strålin, P., Wåhlin, F., & Ångström, H. E. (2003). Effects of injection timing on the conditions at top dead center for direct injected HCCI (No. 2003-01-3219). SAE Technical Paper. https://doi.org/10.4271/2003-01-3219

  • Strandh, P., Bengtsson, J., Johansson, R., Tunestål, P., & Johansson, B. (2004). Cycle-to-cycle control of a dual-fuel HCCI engine. Journal of Engines, 113(3), 589-598. https://doi.org/10.4271/2004-01-0941

  • Sundararajan, K., Janathanan, K., Pandian, V., Dhandapani, M., & Kanagara, K. (2016). A performance, combustion and emission study on HCCI engine: Trends and innovations (No. 2016-28-0013). SAE Technical Paper. https://doi.org/10.4271/2016-28-0013

  • Tamilselvan, R., Rameshbabu, R., & Thirunavukkarasu, R. (2018). Effect of fuel injection timing on performance and emission characteristics of ceiba pentandra biodiesel. Materials Today: Proceedings, 5(2), 6770-6779. https://doi.org/10.1016/j.matpr.2017.11.336

  • Thrlng, R. (2011). Homogeneous-charge compression ignition (HCCI) engines (No. 1989-09-01). SAE Technical Paper. https://doi.org/10.4271/892068

  • Tobib, H. M., Rostam, H., Mossa, M. A. A., Hairuddin, A. A., & Noor, M. M. (2019). The performance of an HCCI-DI engine fuelled with palm oil-based biodiesel. In IOP Conference Series: Materials Science and Engineering (Vol. 469, Article 012079). IOP Publishing. https://doi.org/10.1088/1757-899x/469/1/012079

  • Urata, Y., Awasaka, M., Takanashi, J., Kakinuma, T., Hakozaki, T., & Umemoto, A. (2004). A study of gasoline-fuelled HCCI engine equipped with an electromagnetic valve train (No. 2004-01-1898). SAE Technical Paper. https://doi.org/10.4271/2004-01-1898

  • Wei, L., Cheung, C. S., & Ning, Z. (2017). Influence of waste cooking oil biodiesel on combustion, unregulated gaseous emissions and particulate emissions of a direct-injection diesel engine. Energy, 127, 175-185. https://doi.org/10.1016/j.energy.2017.03.117

  • Yousefi, A., & Birouk, M. (2017). Investigation of natural gas energy fraction and injection timing on the performance and emissions of a dual-fuel engine with pre-combustion chamber under low engine load. Applied Energy, 189, 492-505. https://doi.org/10.1016/j.apenergy.2016.12.046

  • Zhang, S., Broadbelt, L. J., Androulakis, I. P., & Ierapetritou, M. G. (2012). Comparison of biodiesel performance based on HCCI engine simulation using detailed mechanism with on-the-fly reduction. Energy & Fuels, 26(2), 976-983. https://doi.org/10.1021/ef2019512

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-4579-2023

Download Full Article PDF

Share this article

Related Articles