e-ISSN 2231-8526
ISSN 0128-7680
Beni Hidayat, Vida Elsyana and Sheniah Glori Simorangkir
Pertanika Journal of Science & Technology, Volume 32, Issue 2, March 2024
DOI: https://doi.org/10.47836/pjst.32.2.24
Keywords: Cassava starch, starch nanoparticles, ultrasonic
Published on: 26 March 2024
Starch nanoparticles have the potential to be developed as a cassava starch derivative. The research aims to obtain the optimal process conditions (ultrasonic process time and starch concentration) to produce starch nanoparticles with the best characteristics. The treatment variables used in this study were the duration of the ultrasonication process (30, 60, and 90 minutes) and the starch concentration (1%, 2%, and 3%). The results showed that the ultrasonication process time and starch concentration affected the yield, particle size and distribution, polydispersity index, optical characteristics (transmittance), and clarity score of starch nanoparticles. Ultrasonic process time of 90 minutes and starch concentration of 3% will produce starch nanoparticle products with a yield of 13.68%, particle size ≤ 100 nm of 23.6%, average particle size of 230.8 nm with polydispersity index of 0.581, transmittance value of 61.27%, and a solution clarity score of 3.80 (not clear). Tapioca-based SNPs can be developed solely with ultrasonic method to simplify the process.
BeMiller, J., & Whistler, R. (2009). Starch: Chemistry and Technology (3rd ed.). Academic Press.
Bonto, A. P., Tiozon, R. N., Sreenivasulu, N., & Camacho, H. (2021). Impact of ultrasonic treatment on rice starch and grain functional properties: A review. Ultrasonic Sonochemistry, 71, Article 105383. https://doi.org/10.1016/j.ultsonch.2020.105383
Boufi, S., Haaj, S. B., Magnin, A., Pignon, F., & Mortha, G. (2018). Ultrasonic assisted production of starch nanoparticles: Structural characterization and mechanism of disintegration. Ultrasonic Sonochemistry, 41, 327-336. http://dx.doi.org/10.1016/j.ultsonch.2017.09.033
BPS-Statistics of Lampung Province. (2022). Lampung Province in Figure 2021. https://lampung.bps.go.id/publication/2021/02/26/443c020eb6a33a394e6d3df4/provinsi-lampung-dalam-angka-2021.html
Czechowska-Biskup, R., Rokita, B., Lotfy, S., Ulanski, P., & Rosiak, J. M. (2005). Degradation of chitosan and starch by 360-kHz ultrasound. Carbohydrate Polymers, 60, 175-184. https://doi.org/10.1016/j.carbpol.2004.12.001
EFSA Scientific Committee. (2011). Guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. EFSA Journal, 9(5), Article 2140. https://doi.org/10.2903/j.efsa.2011.2140
Ezhilarasi, P. N., Karthik, P., Chhanwal, N., & Anandharamakrishnan, C. (2013). Nanoencapsulation techniques for food bioactive components: A review. Food and Bioprocess Technology, 6, 628-647. https://doi.org/10.1007/s11947-012-0944-0
Garcia, N. L., Ribbon, L., Dufresne, A., Aranguren, M., & Goyanes S. (2011). Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals. Carbohydrate Polymers, 84(1), 203-210. https://doi.org/10.1016/j.carbpol.2010.11.024
Goncalves, P. M., Norena, C. P. Z., Silveira, N. P., & Brandelli, A. (2014). Characterization of starch nanoparticles obtained from Araucaria angustifolia seeds by acid hydrolysis and ultrasound. LWT - Food Science and Technology, 58, 21-27. https://dx.doi.org/10.1016/j.lwt.2014.03.015
Haaj, S. B., Magnin, A., Pétrier, C., & Boufi, S. (2013). Starch nanoparticles formation via high power ultrasonication. Carbohydrate Polymers, 92,1625-1632. https://doi.org/10.1016/j.carbpol.2012.11.022
Hidayat, B., Hasanuddin, U., Nurdjanah, S., Yuliana, N., Muslihudin, M., & Akmal, S. (2021). Application of partial gelatinization autoclaving-cooling process to increase the resistant starch content of fermented cassava pulp flour-based composite flour. Asian Journal of Agriculture and Biology, 2021(3), 1-10. https://doi.org/10.35495/ajab.2020.09.483
Jambrak, A. N., Herceg, Z., Šubaric, D., Babic, J., Brncic, M., Brncic, S. R., Bosiljkov, T., Cvek, D., Tripalo, B., & Boufi, S. (2010). Ultrasound effect on physical properties of corn starch. Carbohydrate Polymers, 79, 91-100. https://dx.doi.org/10.1016/j.carbpol.2009.07.051
Kim, H. Y., Park, D. J., Kim, J. Y., & Lim, S. T. (2013). Preparation of crystalline starch nanoparticles using cold acid hydrolysis and ultrasonication. Carbohydrate Polymer, 98, 295-301. https://dx.doi.org/10.1016/j.carbpol.2013.05.085
Kumari, S., Yadav, B. S., & Yadav, R, B. (2020). Synthesis and modification approaches for starch nanoparticles for their emerging food industrial applications: A review. Food Research International, 128, Article 108765. https://doi.org/10.1016/j.foodres.2019.108765
Lamanna, M., Morales, N. J., Garcia, N. L., & Goyanes, S. (2013). Development and characterization of starch nanoparticles by gamma radiation: Potential application as starch matrix filler. Carbohydrate Polymers, 97, 90-97. https://dx.doi.org/10.1016/j.carbpol.2013.04.081
Le-Corre, D., Bras, J., & Dufresne, A. (2010). Starch nanoparticles: A review. Biomacromolecules, 11(5), 1139-1153.
Liu, C., Qin, Y., Li, X., Sun, Q., Xiong, L., & Liu, Z. (2016). Preparation and characterization of starch nanoparticles via self-assembly at moderate temperature. International Journal of Biological Macromolecules, 84, 354-360. https://dx.doi.org/10.1016/j.ijbiomac.2015.12.040
Sharma, M., Kadam, D. M., Chadha, S., Wilson, R. A., & Gupta, R. K. (2013). Influence of particle size on physical and sensory attributes of mango pulp powder. International Agrophysics, 27(3), 323-328. https://doi.org/10.2478/intag-2013-0001
Sujka, M. (2017). Ultrasonik modification of starch - Impact on granules porosity. Ultrasonic Sonochemistry, 37(2017), 424-429. https://doi.org/10.1016/j.ultsonch.2017.02.001
Zhu, H. P., Zhou, Z. Y., Yang, R. Y., & Yu, A. B. (2007). Discrete particle simulation of particulate systems: Theoretical developments. Chemical Engineering Science, 62(13), 3378-3396. https://doi.org/10.1016/j.ces.2006.12.089
Zukryandry, Hidayat, B., & Muslihudin. (2022). Timing of extraction with ultrasonic bath system to improve the yield and chemical characteristic of cassava starch. IOP Conference Series: Earth and Environmental Science, 1012, Article 012016. https://doi.org/10.1088/1755-1315/1012/1/012016
Zuo, Y. Y. J., Hebraud, P., Hemar, Y., & Ashokkumar, M. (2012). Quantification of high-power ultrasound induced damage on potato starch granules using light microscopy. Ultrasonics Sonochemistry, 19, 421-426. https://doi.org/10.1016/j.ultsonch.2011.08.006
ISSN 0128-7680
e-ISSN 2231-8526