e-ISSN 2231-8526
ISSN 0128-7680
Mohd Rashidi Abdull Manap, Noor Hazfalinda Hamzah, Qhurratul Aina Kholili, Fatin Abu Hasan and Azhana Alhumaira
Pertanika Journal of Science & Technology, Volume 32, Issue 1, January 2024
DOI: https://doi.org/10.47836/pjst.32.1.08
Keywords: Aerosolization, chromatography, e-cigarettes, e-liquid, ingredients, nicotine, quantification, spectroscopy
Published on: 15 January 2024
Spectroscopy and chromatography methods have become the most preferred techniques for detecting ingredients in e-liquid analysis. Both methods are widely used for separating and quantifying volatile compounds in a sample, providing individual chemical information in complex mixtures. This paper aims to review the detection and quantification of nicotine and other chemical ingredients in e-liquid used in e-cigarettes. E-cigarettes use the evaporation-condensation principle of aerosolization to produce an inhaled vapor containing nicotine, excipients, and flavoring agents. This review covers sample preparation, identification, and quantification of nicotine and other ingredients using chromatography and spectroscopy analysis. The spectroscopy methods are useful for quickly identifying and quantifying volatile compounds, including propylene glycol (PG), vegetable glycol (VG), and nicotine, while spectroscopic methods, particularly the Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) method, have lower analytical performance compared to chromatography methods in detecting nicotine and other chemical ingredients. Based on the review, chromatographic methods are the primary option for analyzing nicotine in all e-liquid samples, offering a better alternative for a future study with the presence of multiple detectors.
Almazrouei, E. S., Bintamim, A. A., Khalil, S. E. A., Alremeithi, R., & Gewily, S. (2022). The identification of drugs of abuse in e-cigarette samples seized in Dubai between 2016 and 2020. Forensic Science International, 333, Article 111233. https://doi.org/10.1016/J.FORSCIINT.2022.111233
Aszyk, J., Kubica, P., Namieśnik, J., Kot-Wasik, A., & Wasik, A. (2018). New approach for e-cigarette aerosol collection by an original automatic aerosol generator utilizing melt-blown non-woven fabric. Analytica Chimica Acta, 1038, 67-78. https://doi.org/https://doi.org/10.1016/J.ACA.2018.08.015
Augustini, A. L. R. M., Sielemann, S., & Telgheder, U. (2021). Strategy for the identification of flavor compounds in e-liquids by correlating the analysis of GCxIMS and GC-MS. Talanta, 230, Article 122318. https://doi.org/10.1016/J.TALANTA.2021.122318
Bacsik, Z., McGregor, J., & Mink, J. (2007). FTIR analysis of gaseous compounds in the mainstream smoke of regular and light cigarettes. Food and Chemical Toxicology, 45(2), 266-271. https://doi.org/10.1016/J.FCT.2006.08.018
Canada.ca. (2021). Nicotine Concentration in Vaping Products Regulations. https://laws.justice.gc.ca/eng/regulations/SOR-2021-123/
Cao, Y., Wu, D., Ma, Y., Ma, X., Wang, S., Li, F., Li, M., & Zhang, T. (2021). Toxicity of electronic cigarettes: A general review of the origins, health hazards, and toxicity mechanisms. Science of The Total Environment, 772, Article 145475. https://doi.org/10.1016/J.SCITOTENV.2021.145475
Cowan, E. A., Tran, H., Gray, N., Perez, J. J., Watson, C., Blount, B. C., & Valentín-Blasini, L. (2022). A gas chromatography-mass spectrometry method for quantifying squalane and squalene in aerosol emissions of electronic cigarette, or vaping, products. Talanta, 238, Article 122985. https://doi.org/10.1016/J.TALANTA.2021.122985
Dai, J., Kim, K. H., Szulejko, J. E., Jo, S. H., Kwon, K., & Choi, D. W. (2018). Quantification of nicotine and major solvents in retail electronic cigarette fluids and vaped aerosols. Microchemical Journal, 140, 262-268. https://doi.org/https://doi.org/https://doi.org/10.1016/j.microc.2018.04.028
Davis, B., Dang, M., Kim, J., & Talbot, P. (2015). Nicotine concentrations in electronic cigarette refill and do-it-yourself fluids. Nicotine & Tobacco Research, 17(2), Article 134. https://doi.org/10.1093/NTR/NTU080
Deconinck, E., Bothy, J. L., Barhdadi, S., & Courselle, P. (2016). Discriminating nicotine and non-nicotine containing e-liquids using infrared spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 120, 333-341. https://doi.org/10.1016/J.JPBA.2015.12.054
Eddingsaas, N., Pagano, T., Cummings, C., Rahman, I., Robinson, R., & Hensel, E. (2018). Qualitative analysis of e-liquid emissions as a function of flavor additives using two aerosol capture methods. International Journal of Environmental Research and Public Health, 15(2), Article 323. https://doi.org/10.3390/IJERPH15020323
Giroud, C., de Cesare, M., Berthet, A., Varlet, V., Concha-Lozano, N., & Favrat, B. (2015). E-cigarettes: A review of new trends in cannabis use. International Journal of Environmental Research and Public Health, 12(8), 9988-10008. https://doi.org/10.3390/IJERPH120809988
Hahn, J., Monakhova, Y. B., Hengen, J., Kohl-Himmelseher, M., Schössler, J., Hahn, H., Kuballa, T., & Lachenmeier, D. W. (2014). Electronic cigarettes: Overview of chemical composition and exposure estimation. Tobacco Induced Diseases, 12(1), Article 23. https://doi.org/10.1186/S12971-014-0023-6
Heldt, N. A., Reichenbach, N., McGary, H. M., & Persidsky, Y. (2021). Effects of electronic nicotine delivery systems and cigarettes on systemic circulation and blood-brain barrier: Implications for cognitive decline. The American Journal of Pathology, 191(2), 243-255. https://doi.org/10.1016/J.AJPATH.2020.11.007
ISO 20714. (2019). E-Liquid - Determination of Nicotine, Propylene Glycol and Glycerol in Liquids used in Electronic Nicotine Delivery Devices - Gas Chromatographic Method. https://www.iso.org/standard/68905.html
Ketonen, V., & Malik, A. (2020). Characterizing vaping posts on Instagram by using unsupervised machine learning. International Journal of Medical Informatics, 141, Article 104223. https://doi.org/10.1016/J.IJMEDINF.2020.104223
Kimbrough, D. (2019). Vaping: What you need to know. American Chemical Society. https://www.acs.org/education/resources/highschool/chemmatters/past-issues/2019-2020/dec-2019/vaping.html
Laestadius, L. I., Wahl, M. M., Pokhrel, P., & Cho, Y. I. (2019). From apple to werewolf: A content analysis of marketing for e-liquids on Instagram. Addictive Behaviors, 91, 119-127. https://doi.org/10.1016/J.ADDBEH.2018.09.008
Li, Y., Burns, A. E., Tran, L. N., Abellar, K. A., Poindexter, M., Li, X., Madl, A. K., Pinkerton, K. E., & Nguyen, T. B. (2021). Impact of e-liquid composition, coil temperature, and puff topography on the aerosol chemistry of electronic cigarettes. Chemical Research in Toxicology, 34(6), 1640-1654. https://doi.org/10.1021/ACS.CHEMRESTOX.1C00070/SUPPL_FILE/TX1C00070_SI_001.PDF
Mamián-López, M. B., & Poppi, R. J. (2013). Standard addition method applied to the urinary quantification of nicotine in the presence of cotinine and anabasine using surface enhanced Raman spectroscopy and multivariate curve resolution. Analytica Chimica Acta, 760, 53-59. https://doi.org/10.1016/J.ACA.2012.11.023
New Zealand Legislation. (2020). Smokefree Environments and Regulated Products (Vaping) Amendment Act 2020 No 62, Public Act. https://www.legislation.govt.nz/act/public/2020/0062/40.0/whole.html
Ooi, B. G., Dutta, D., Kazipeta, K., & Chong, N. S. (2019). Influence of the e-cigarette emission profile by the ratio of glycerol to propylene glycol in e-liquid composition. ACS Omega, 4(8), 13338-13348. https://doi.org/10.1021/ACSOMEGA.9B01504/ASSET/IMAGES/LARGE/AO9B01504_0004.JPEG
Palazzolo, D., Nelson, J. M., & Hudson, Z. (2019). The use of HPLC-PDA in determining nicotine and nicotine-related alkaloids from e-liquids: A comparison of five e-liquid brands purchased locally. International Journal of Environmental Research and Public Health, 16(17), Article 3015. https://doi.org/10.3390/IJERPH16173015
Patel, D., Taudte, R. V., Nizio, K., Herok, G., Cranfield, C., & Shimmon, R. (2021). Headspace analysis of e-cigarette fluids using comprehensive two dimensional GC×GC-TOF-MS reveals the presence of volatile and toxic compounds. Journal of Pharmaceutical and Biomedical Analysis, 196, Article 113930. https://doi.org/10.1016/J.JPBA.2021.113930
Peace, M. R., Baird, T. R., Smith, N., Wolf, C. E., Poklis, J. L., & Poklis, A. (2016). Concentration of nicotine and glycols in 27 electronic cigarette formulations. Journal of Analytical Toxicology, 40(6), 403-407. https://doi.org/10.1093/JAT/BKW037
Poulsen, J., Nielsen, K. A., & Bauer-Brandl, A. (2022). Raman imaging as a powerful tool to elucidate chemical processes in a matrix: Medicated chewing gums with nicotine. Journal of Pharmaceutical and Biomedical Analysis, 209, Article 114519. https://doi.org/10.1016/J.JPBA.2021.114519
Qin, J., Dou, Y., Wu, F., Yao, Y., Andersen, H. R., Hélix-Nielsen, C., Lim, S. Y., & Zhang, W. (2022). In-situ formation of Ag2O in metal-organic framework for light-driven upcycling of microplastics coupled with hydrogen production. Applied Catalysis B: Environmental, 319, Article 121940. https://doi.org/https://doi.org/10.1016/j.apcatb.2022.121940
UAE.S Standard. (2019). Electronic Nicotine Products (Equivalents of Traditional Tobacco Products). Emirates Authority for Standardization & Metrology (ESMA). https://d3vqfzrrx1ccvd.cloudfront.net/uploads/legislation/United%20Arab%20Emirates/United-Arab-Emirates-UAE.S-50302018.pdf
Vivarelli, F., Granata, S., Rullo, L., Mussoni, M., Candeletti, S., Romualdi, P., Fimognari, C., Cruz-Chamorro, I., Carrillo-Vico, A., Paolini, M., & Canistro, D. (2022). On the toxicity of e-cigarettes consumption: Focus on pathological cellular mechanisms. Pharmacological Research, 182, Article 106315. https://doi.org/10.1016/J.PHRS.2022.106315
Wu, N., Danoun, S., Balayssac, S., Malet-Martino, M., Lamoureux, C., & Gilard, V. (2021). Synthetic cannabinoids in e-liquids: A proton and fluorine NMR analysis from a conventional spectrometer to a compact one. Forensic Science International, 324, Article 110813. https://doi.org/10.1016/J.FORSCIINT.2021.110813
ISSN 0128-7680
e-ISSN 2231-8526