e-ISSN 2231-8526
ISSN 0128-7680
Nursigit Bintoro, Alya Iqlima Zahra, Azizah Putri Khansa, Muftia Chairin Nissa, Aldhayu Sam Safira and Sastika Nidya Ashari
Pertanika Journal of Science & Technology, Volume 31, Issue 3, April 2023
DOI: https://doi.org/10.47836/pjst.31.3.04
Keywords: Direct shear cell, grain, moisture content, φ, θ
Published on: 7 April 2023
The frictional property of grains is one of the most important engineering parameters in developing solid bulk handling of grains. It is necessary for designing agricultural facilities and production process activities. These properties are expressed as internal friction angle (φ) and wall friction angle (θ), which are known to be affected by the moisture content of the grains. This research investigates the effect of moisture content on the values of φ and θ of some selected grains. In the research, some indigenous Indonesian grain types, including rough rice, white rice, corn, soybean, and coffee, each in three varieties and three level of moisture contents, were used as the research samples. Those angles were measured using a self-constructed direct shear cell apparatus. Three different normal loads for each grain type were used with three replications. It is concluded that φ and θ of the tested grains increase with moisture contents with different trends of increments. The relationship of those angles with moisture contents can be expressed as linear regression equations. The slope of the regression lines for both φ and θ is significantly affected by grain type (p<0.05). For φ, coffee (Excelsa) is the most susceptible to the change in moisture content, while dent corn (Hibrida) is the least affected one. For θ, soybean (Galunggung) is the most susceptible to the change in moisture content, while rough rice (Mapan 5) is the least affected one.
Alghalayini, R. (2020). Improving an internal material handling system. A case study of a Swedish company in food industry. Jönköping University, Sweden. https://www.diva-portal.org/smash/get/diva2:1458374/FULLTEXT01.pdf
Bako, T., & Bardey, I. A. (2020). Engineering properties of acha (digitaria exilis) grains in relation to the design of grain processing machines. Agricultural Engineering International: CIGR Journal, 22(3), 159-170.
BPS-Statistics Indonesia. (2021). Statistical Yearbook of Indonesia 2021. Badan Pusat Statistik. https://www.bps.go.id/publication/2021/02/26/938316574c78772f27e9b477/statistik-indonesia-2021.html
Brar, H. S., Sidhu, G. K., & Singh, A. (2016). Effect of moisture content on engineering properties of oats (Avena sativa L.). Agricultural Engineering International: CIGR Journal, 18(3), 186-193.
Bucklin, R., Thompson, S., Montross, M., & Abdel-Hadi, A. (2013). Grain storage systems design. In M. Kutz (Ed.), Handbook of Farm, Dairy and Food Machinery Engineering, (pp. 123-175). Elsevier. https://doi.org/10.1016/B978-0-12-385881-8.00007-0
Dauda, S. M., Ismail, F., Balami, A. A., Aliyu, M., Mohammed, I. S., & Ahmad, D. (2019). Physical and mechanical properties of raphia palm kernel at different moisture contents. Food Research, 3(4), 305-312.
Dawange, S. P., & Jha, S. K. (2019). Moisture dependent physical properties of quality protein maize. Journal of Agricultural Engineering, 56(3), 48-65.
de Oliveira, G. H. H., Corrêa, P. C., de Oliveira, A. P. L. R., Vargas-Elías, G. A., & Júnior, C. C. (2022). Arabica coffee flow properties assessed using different roasts and particle sizes during storage. Brazilian Journal of Food Technology, 25, 1-12, https://doi: 10.1590/1981-6723.02621
Ehiem, J. C., Ndirika, V. I. O., & Raghavan, G. S. V. (2015). Frictional properties of canarium schweifurthii engl. fruits and their interaction with moisture content and shape. International Journal of Engineering and Applied Sciences (IJEAS), 2(8), 30-34.
Elyashiv, H., Bookman, R., Siemann, L., Brink, U., & Huhn, K. (2020). Numerical characterization of cohesive and non-cohesive ‘sediments’ under different consolidation states using 3D DEM triaxial experiments. Processes, 8(10), Article 1252. https://doi.org/10.3390/pr8101252
Etim, P. J., Alonge, A. F., & Akpan, G. E. (2021). Effect of moisture content on some mechanical and frictional properties of mucuna bean (Mucuna crens) relevant to its cracking. Agricultural Engineering International: CIGR Journal, 23(4), 265-273.
Fadeyibi, A., Lamidi, W. A., & Ademola, S. M. (2021). Engineering and proximate properties of miracle berry fruit (Synsepalum dulcificum L.). Agricultural Engineering International: CIGR Journal, 23(4), 227-235.
Fayed, M. I. A., El-Shal, M. S., & Omar, O. A. (2020). Determination of some apricot seed and kernel physical and mechanical properties. Agricultural Engineering International: CIGR Journal, 22(4), 229-237.
FAO. (2021). Post-harvest Losses. Food and Agricultural Organization. https://www.fao.org/3/t0522e/T0522E04.htm#Post-harvest%20losses
Gierz, L., Kolankowska, E., Markowski, P., & Koszela, K. (2022). Measurements and analysis of the physical properties of cereal seeds depending on their moisture content to improve the accuracy of DEM simulation. Applied Science, 12(2), Article 549. https://doi: 10.3390/app12020549
Hasmadi, M. (2021). Effect of water on the caking properties of different types of wheat flour. Food Research, 5(1), 266-270. https://doi: 10.26656/fr.2017.5(1).412
Inekwe, G., Kiniyi, B. U., Umunna, M., & Udensi, N. K. (2019). Effect of moisture content on physical properties of mung bean (Vignaradiata L.). International Journal of Engineering Research, 8(07), 54-59.
International Coffee Organization. (2021). Coffee Year Production by Country. https://www.ico.org/prices/po-production.pdf
Jan, K. N., Panesar, P. S., & Singh, S. (2019). Effect of moisture content on the physical and mechanical properties of quinoa seeds. International Agrophysics, 33(1), 41-48. https://doi.org10.31545/intagr/104374
Kaliniewicz, Z., Jadwisieńczak, K., Żuk, Z., Konopka, S., Frączyk, A., & Krzysiak, Z. (2020). Effects of friction plate hardness and surface orientation on the frictional properties of cereal grain. International Journal of Food Science, 2020, Article 6639233. https://doi.org/10.1155/2020/6639233
Kopeć-Jarosz, A., & Wójcik, A. (2021). The impact of moisture and number of contact points on the process of friction in plant granular materials. Processes, 9(2), Article 215. https://doi.org/10.3390/pr9020215
Kruszelnicka, W. (2021). Study of selected physical-mechanical properties of corn grains important from the point of view of mechanical processing systems designing. Materials, 14(6), Article 1467. https://doi:10.3390/ma14061467
Larsson, S. (2019). Particle Methods for Modelling Granular Material Flow. [Doctoral dissertation]. Lulea University of Technology, Sweden. https://www.diva-portal.org/smash/get/diva2:1296317/FULLTEXT01.pdf
Li, X., Du, Y., Guo, J., & Mao, E. (2020). Design, simulation, and test of a new threshing cylinder for high moisture content corn. Applied Science, 10(14), Article 4925. https://doi.org/10.3390/app10144925
Liu, J., S. Du, S., & Fu, Z. (2021). The impact of rural population aging on farmers’ cleaner production behavior: Evidence from five provinces of the north China plain. Sustain, 13(21), Article 12199. https://doi: 10.3390/su132112199
McLaren, C. P., Kovar, T. M., Penn, A., Müller, C. R., & Boyce, C. M. (2019). Gravitational instabilities in binary granular materials. Proceeding of The National Academy of Science, USA, 116(19), 9263-9268. https://doi.org/10.1073/pnas.1820820116
Mohite, A. M., Sharma, N., & Mishra, A. (2019). Influence of different moisture content on engineering properties of tamarind seeds. International Agricultural Engineering Journal, 21(1), 220-224.
Nicastro, R., & Carillo, P. (2021). Food loss and waste prevention strategies from farm to fork. Sustainability, 13(10), Article 5443. https://doi.org/10.3390/su13105443
Okolo C. A., Haruna S. A., Chukwu O., & Madu U. O. (2020). Comparative studies of material handling time for maize (Zea mays. Linn.) and sorghum (Sorghum bicolor L. Moench) in a typical 50 metric tonnes (MT)/hr Silo. International Journal of Engineering Research and Technology, 9(1), 457-461.
Pawlak, K., & Kołodziejczak, M. (2020). The role of agriculture in ensuring food security in developing countries: Considerations in the context of the problem of sustainable food production. Sustainability, 12(13), Article 5488. https://doi.org/10.3390/su12135488
Rasti, A., Adarmanabadi, H. R., Pineda, M., & Reinikainen, J. (2021). Evaluating the effect of soil particle characterization on internal friction angle. American Journal of Engineering and Applied Sciences, 14(1), 129-138. https://doi: 10.3844/ajeassp.2021.129.138
Rodrigues, G. B., Resende, O., de Oliveira, D. E. C., Silva, L. C. M., & Junior, W. N. F. (2019). Mechanical properties of grains sorghum subjected to compression at different moisture contents. Journal of Agricultural Science, 11(4), Article 279. https://doi: 10.5539/jas.v11n4p279
Sadiku, O. A., & Omogunsoye, D. (2021). Moisture - Influenced friction properties of ackee apple (Blighia sapida) seeds. Research in Agricultural Engineering, 67(1), 26-33. https://doi: 10.17221/75/2020-RAE
Shi, G., Li, J., Ding, L., Zhang, Z., Ding, H., Li, N., & Kan, Z. (2022). Calibration and tests for the discrete element simulation parameters of fallen jujube fruit. Agriculture, 12(1), Article 38. https://doi.org/10.3390/agriculture12010038
Stephens, M. P., & Meyers, F. E. (2013). Manufacturing facilities design and material handling. Purdue University Press.
Sui, Z. F., Yi, W., Lu, Y. G., & Deng, L. (2021). Experimental and numerical simulation study on the shear strength characteristics of magnolia multiflora root-soil composites. Advances in Civil Engineering, 2021, Article 6642594. https://doi: 10.1155/2021/6642594
Tabari, S. A. M., & Shooshpasha, I. (2021). Evaluation of coarse-grained mechanical properties using small direct shear test. International Journal of Geotechnical Engineering, 15(6), 667-679. https://doi.org/10.1080/19386362.2018.1505310
Tang, H., Xu, C., Jiang, Y., Wang, J., Wang, Z., & Tian, L. (2021). Evaluation of physical characteristics of typical maize seeds in a cold area of north China based on principal component analysis. Processes, 9(7). Article 1167. https://doi.org/10.3390/pr9071167
United States Department of Agriculture. (2022). World Agricultural Production. United States Department of Agriculture, Foreign Agricultural Service. https://usdabrazil.org.br/
Vagová, A., Hromasová, M., Linda, M., & Vaculík, P. (2019). Determining external friction angle of barley malt and malt crush. Agronomy Research, 17(5), 2106-2114. https://doi.org/10.15159/ar.19.149
Vagsholm, I., Arzoomand, N. S., & Boqvist, S. (2020). Food security, safety, and sustainability-getting the trade-offs right. Frontier in Sustainable Food Systems, 4(16), 1-4. https://doi.org/10.3389/fsufs.2020.00016
Wang, B., & Wang, J. (2019). Mechanical properties of maize kernel horny endosperm, floury endosperm and germ. International Journal of Food Properties, 22(1), 863-877. https://doi.org/10.1080/10942912.2019.1614050
Wang, J., Xu, C., Qi, X., Zhou, W., & Tang, H. (2022). Discrete element simulation study of the accumulation characteristics for rice seeds with different moisture content. Foods, 11(3), Article 295. https://doi: 10.3390/foods11030295
Wojcik, A., Fraczek, J., & Niemczewska-Wojcik, M. (2020). The relationship between static and kinetic friction for plant granular materials. Powder Technology, 361, 739-747. https://doi.org/10.1016/j.powtec.2019.11.048
Xu, Q., Cheng, X., & Chen, X. (2019). Models for predicting frictional properties of rapeseed. International Agrophysics, 33(1), 61-66. https://doi.org/10.31545/intagr/104377
Zeng, C., & Wang, Y. (2019). The shear strength and dilatancy behavior of wheat stored in silos. Complexity, 2019, Article 1547616. https://doi.org/10.1155/2019/1547616
Zhang, S., Fu, J., Zhang, R., Zhang, Y., & Yuan, H. (2022). Experimental study on the mechanical properties of friction, collision and compression of tiger nut tubers. Agriculture, 12(1), Article 65. https://doi.org/10.3390/agriculture12010065
Zhu, Y., Miao, S., Li, H., Han, Y., & Lan, H. (2022). An empirical shear model of interface between the loess and hipparion red clay in a loess landslide. Frontiers in Earth Science, 9, 1-18. https://doi.org/10.3389/feart.2021.806832
Zou, Z., Zhang, Q., Xiong, C., Tang, H., Fan, L., Xie, F., Yan, J., & Luo, Y. (2020). In situ shear test for revealing the mechanical properties of the gravelly slip zone soil. Sensors, 20(22), Article 6531. https://doi.org/10.3390/s20226531
ISSN 0128-7680
e-ISSN 2231-8526