PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 31 (3) Apr. 2023 / JST-3633-2022

 

Geochemistry of Foraminifera in the Marginal Seas of the Sunda Shelf: A Review

Aqilah Nur Shahruddin and Che Abd Rahim Mohamed

Pertanika Journal of Science & Technology, Volume 31, Issue 3, April 2023

DOI: https://doi.org/10.47836/pjst.31.3.16

Keywords: Foraminifera, geochemical element, sea-level changes, Southeast Asia, Sunda Shelf

Published on: 7 April 2023

Foraminiferal geochemistry applies geochemical elements embedded in foraminiferal calcites through bioaccumulation to interpret and reconstruct past oceanic climate histories. Due to its extensive variability and abundance, foraminifera is the easiest to retrieve and the best indicator of marine productivity and ocean temporal changes. In this review, we discuss the development of foraminiferal geochemistry studies in Southeast Asia, analyzing its current status and potential areas to be developed, namely, the Sunda Shelf. The Sunda Shelf is one of the world’s largest low-latitude shelves, bordered by marginal seas and sensitive to sea-level changes. The shelf response towards changes in ocean salinity affected the isotopic signals in foraminiferal calcites, which can indicate sea-level changes ideally. The Sunda Shelf has the potential to be developed as a study area for eustatic sea-level changes as it is located far from major glaciation centers; hence through this review, we aim to highlight the potential of exploring the application of geochemical elements in foraminifera as an indicator for sea-level changes. To date, literature on foraminiferal geochemistry in this region is very limited, thus inhibiting progress in such studies. A comprehensive summary of past studies in this region is provided to give a general overview of the direction of foraminiferal geochemistry studies and serve as guidelines for future research.

  • Ahmad, S. M., Guichard, F., Hardjawidjaksana, K., Adisaputra, M. K., & Labeyrie, L. D. (1995). Late quaternary paleoceanography of the Banda Sea. Marine Geology, 122(4), 385-397. https://doi.org/10.1016/0025-3227(94)00116-3

  • Anand, P., Elderfield, H., & Conte, M. H. (2003). Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series. Paleoceanography, 18(2), Article 1050. https://doi.org/10.1029/2002pa000846

  • Bird, M. I., Fifield, L. K., Teh, T. S., Chang, C. H., Shirlaw, N., & Lambeck, K. (2007). An inflection in the rate of early mid-Holocene eustatic sea-level rise: A new sea-level curve from Singapore. Estuarine, Coastal and Shelf Science, 71(3-4), 523-536. https://doi.org/10.1016/j.ecss.2006.07.004

  • Bird, M. I., Austin, W. E. N., Wurster, C. M., Fifield, L. K., Mojtahid, M., & Sargeant, C. (2010). Punctuated eustatic sea-level rise in the early mid-Holocene. Geology, 38(9), 803-806. https://doi.org/10.1130/G31066.1

  • Boltovskoy, E., & Wright, R. C. (Eds.). (2013). Recent Foraminifera. Springer Science & Business Media. https://doi.org/https://doi.org/10.1007/978-94-017-2860-7

  • Clark, P. U., & Mix, A. C. (2002). Ice sheets and sea level of the last glacial maximum. Quaternary Science Reviews, 21(1-3), 1-7. https://doi.org/10.1016/S0277-3791(01)00118-4

  • Culver, S. J., Leorri, E., Mallinson, D. J., Corbett, D. R., & Shazili, N. A. M. (2015). Recent coastal evolution and sea-level rise, Setiu Wetland, Peninsular Malaysia. Palaeogeography, Palaeoclimatology, Palaeoecology, 417, 406-421.

  • Dang, H., Jian, Z., Wu, J., Bassinot, F., Wang, T., & Kissel, C. (2018). The calcification depth and Mg/Ca thermometry of Pulleniatina obliquiloculata in the tropical Indo-Pacific: A core-top study. Marine Micropaleontology, 145, 28-40. https://doi.org/10.1016/j.marmicro.2018.11.001

  • Emiliani, C. (1955). Pleistocene temperatures. The Journal of Geology, 63(6), 538-578. https://doi.org/10.1086/626295

  • Epstein, S., Buchsbaum, R., Lowenstam, H. A., & Urey, H. C. (1953). Revised carbonate-water isotopic temperature scale. Bulletin of the Geological Society of America, 64(11), 1315-1326. https://doi.org/10.1130/0016-7606(1953)64[1315:RCITS]2.0.CO;2

  • Epstein, S., Buchsbaum, R., Lowenstam, H., & Urey, H. C. (1951). Carbonate-water isotopic temperature scale. Bulletin of the Geological Society of America, 62(4), 417-426. https://doi.org/10.1130/0016-7606(1951)62[417:CITS]2.0.CO;2

  • Evans, D., Brierley, C., Raymo, M. E., Erez, J., & Müller, W. (2016). Planktic foraminifera shell chemistry response to seawater chemistry: Pliocene–Pleistocene seawater Mg/Ca, temperature and sea level change. Earth and Planetary Science Letters, 438, 139-148. https://doi.org/https://doi.org/10.1016/j.epsl.2016.01.013

  • Evans, D., Müller, W., Oron, S., & Renema, W. (2013). Eocene seasonality and seawater alkaline earth reconstruction using shallow-dwelling large benthic foraminifera. Earth and Planetary Science Letters, 381, 104-115. https://doi.org/10.1016/j.epsl.2013.08.035

  • Farrell, W. E., & Clark, J. A. (1976). On postglacial sea level. Geophysical Journal of the Royal Astronomical Society, 46(3), 647-667. https://doi.org/10.1111/J.1365-246X.1976.TB01252.X

  • Felder, S., Sagawa, T., Greaves, M., Leng, M. J., Ikehara, K., Kimoto, K., Hasegawa, S., Wagner, T., & Henderson, A. C. G. (2022). Palaeoceanography of the Japan Sea across the Mid-Pleistocene transition: Insights from IODP exp. 346, site U1427. Paleoceanography and Paleoclimatology, 37(1), Article e2021PA004236. https://doi.org/10.1029/2021PA004236

  • Fraser, N., Kuhnt, W., Holbourn, A., Bolliet, T., Andersen, N., Blanz, T., & Beaufort, L. (2015). Precipitation variability within the West Pacific Warm Pool over the past 120 ka: Evidence from the Davao Gulf, southern Philippines. Paleoceanography, 29(11), 1094-1110. https://doi.org/10.1002/2013PA002599

  • Geyh, M. A., Kudrass, H. R., & Streif, H. (1979). Sea-level changes during the late Pleistocene and Holocene in the Strait of Malacca. In Nature (Vol. 278, Issue 5703, pp. 441-443). Nature Publishing Group. https://doi.org/10.1038/278441a0

  • Gold, D. P. (2021). Sea-level change in geological time. In D. Alderton & S. Elias (Eds.), Encyclopedia of Geology (2nd ed., pp. 412-434). Elsevier. https://doi.org/10.1016/b978-0-12-409548-9.11899-8

  • Grant, K. M., Rohling, E. J., Bronk Ramsey, C., Cheng, H., Edwards, R. L., Florindo, F., Heslop, D., Marra, F., Roberts, A. P., Tamisiea, M. E., & Williams, F. (2014). Sea-level variability over five glacial cycles. Nature Communications, 5(1), 1-9. https://doi.org/10.1038/ncomms6076

  • Gray, W. R., Weldeab, S., Lea, D. W., Rosenthal, Y., Gruber, N., Donner, B., & Fischer, G. (2018). The effects of temperature, salinity, and the carbonate system on Mg/Ca in Globigerinoides ruber (white): A global sediment trap calibration. Earth and Planetary Science Letters, 482, 607-620. https://doi.org/10.1016/j.epsl.2017.11.026

  • Gupta, B. K. S. (Ed.). (2003). Modern Foraminifera. Springer. https://doi.org/10.1007/0-306-48104-9

  • Haberle, S., Gagan, M. K., Hendy, E. J., Haberle, S. G., & Hantoro, W. S. (2004). Post-glacial evolution of the Indo-Pacific warm pool and El Nino-Southern oscillation. Quaternary International, 118-119, 127-143. https://doi.org/10.1016/S1040-6182(03)00134-4

  • Hanebuth, T. J. J., Stattegger, K., & Bojanowski, A. (2009). Termination of the last glacial maximum sea-level lowstand: The Sunda-Shelf data revisited. Global and Planetary Change, 66(1–2), 76-84. https://doi.org/10.1016/j.gloplacha.2008.03.011

  • Hanebuth, T., Stattegger, K., & Grootes, P. M. (2000). Rapid flooding of the Sunda Shelf: A late-glacial sea-level record. Science, 288(5468), 1033-1035. https://doi.org/10.1126/science.288.5468.1033

  • Hanebuth, T. J.J., Voris, H. K., Yokoyama, Y., Saito, Y., & Okuno, J. (2011). Formation and fate of sedimentary depocentres on Southeast Asia’s Sunda Shelf over the past sea-level cycle and biogeographic implications. Earth-Science Reviews, 104(1-3), 92-110. https://doi.org/10.1016/J.EARSCIREV.2010.09.006

  • Hassan, K. (2002). Holocene sea level changes in Peninsular Malaysia. Bulletin of the Geological Society of Malaysia, 45, 301-308. https://doi.org/10.7186/BGSM45200246

  • Hawkes, A. D., Bird, M., Cowie, S., Grundy-Warr, C., Horton, B. P., Shau Hwai, A. T., Law, L., Macgregor, C., Nott, J., Ong, J. E., Rigg, J., Robinson, R., Tan-Mullins, M., Sa, T. T., Yasin, Z., & Aik, L. W. (2007). Sediments deposited by the 2004 Indian Ocean Tsunami along the Malaysia-Thailand Peninsula. Marine Geology, 242(1-3), 169-190. https://doi.org/10.1016/j.margeo.2007.02.017

  • Haynes, J. R. (Ed.). (1981). Foraminifera. Palgrave Macmillan UK. https://doi.org/10.1007/978-1-349-05397-1

  • Hesp, P. A., Hung, C. C., Hilton, M., Ming, C. L., & Turner, I. M. (1998). A first tentative Holocene sea-level curve for Singapore. Journal of Coastal Research, 14(1), 308-314. https://www.jstor.org/stable/4298779

  • Hollstein, M., Mohtadi, M., Rosenthal, Y., Moffa Sanchez, P., Oppo, D., Martínez Méndez, G., Steinke, S., & Hebbeln, D. (2017). Stable oxygen isotopes and Mg/Ca in planktic foraminifera from modern surface sediments of the Western Pacific Warm Pool: Implications for thermocline reconstructions. Paleoceanography, 32(11), 1174-1194. https://doi.org/10.1002/2017PA003122

  • Hollstein, M., Mohtadi, M., Rosenthal, Y., Prange, M., Oppo, D. W., Martínez Méndez, G., Tachikawa, K., Moffa Sanchez, P., Steinke, S., & Hebbeln, D. (2018). Variations in Western Pacific Warm Pool surface and thermocline conditions over the past 110,000 years: Forcing mechanisms and implications for the glacial Walker circulation. Quaternary Science Reviews, 201, 429-445. https://doi.org/10.1016/j.quascirev.2018.10.030

  • Jorissen, F. J., Fontanier, C., & Thomas, E. (2007). Chapter seven paleoceanographical proxies based on deep-sea benthic foraminiferal assemblage characteristics. Developments in Marine Geology, 1, 263-325. https://doi.org/10.1016/S1572-5480(07)01012-3

  • Katz, M. E., Cramer, B. S., Franzese, A., Hönisch, B., Miller, K. G., Rosenthal, Y., & Wright, J. D. (2010). Traditional and emerging geochemical proxies in foraminifera. Journal of Foraminiferal Research, 40(2), 165-192. https://doi.org/10.2113/gsjfr.40.2.165

  • Kido, Y., Minami, I., Tada, R., Fujine, K., Irino, T., Ikehara, K., & Chun, J. H. (2007). Orbital-scale stratigraphy and high-resolution analysis of biogenic components and deep-water oxygenation conditions in the Japan Sea during the last 640 kyr. Palaeogeography, Palaeoclimatology, Palaeoecology, 247(1-2), 32-49. https://doi.org/10.1016/j.palaeo.2006.11.020

  • Lambeck, K., Rouby, H., Purcell, A., Sun, Y., & Sambridge, M. (2014). Sea level and global ice volumes from the last glacial maximum to the Holocene. Proceedings of the National Academy of Sciences, 111(43), 15296-15303. https://doi.org/10.1073/pnas.1411762111

  • Lambeck, K., Yokoyama, Y., & Purcell, T. (2002). Into and out of the last glacial maximum: Sea-level change during oxygen isotope stages 3 and 2. Quaternary Science Reviews, 21(1-3), 343-360. https://doi.org/10.1016/S0277-3791(01)00071-3

  • Lea, D. W. (2013). Elemental and isotopic proxies of past ocean temperatures. In H. D. Holland & K. K. Turekian (Eds.), Treatise on Geochemistry: Second Edition (Vol. 8, pp. 373-397). Elsevier. https://doi.org/10.1016/B978-0-08-095975-7.00614-8

  • Lea, D. W. (1999). Trace elements in foraminiferal calcite. In B. K. S. Gupta (Ed.), Modern Foraminifera (pp. 259-277). Springer Science & Business Media. https://doi.org/10.1007/0-306-48104-9_15

  • Li, Q., Zheng, F., Chen, M., Xiang, R., Qiao, P., Shao, L., & Cheng, X. (2010). Glacial paleoceanography off the mouth of the Mekong River, southern South China Sea, during the last 500ka. Quaternary Research, 73(3), 563-572. https://doi.org/10.1016/j.yqres.2010.03.003

  • Lisiecki, L. E., & Raymo, M. E. (2005). A Pliocene-Pleistocene stack of 57 globally distributed benthic δ 18O records. Paleoceanography, 20(1), 1-17. https://doi.org/10.1029/2004PA001071

  • Lo Giudice Cappelli, E., Holbourn, A., Kuhnt, W., & Regenberg, M. (2016). Changes in Timor Strait hydrology and thermocline structure during the past 130 ka. Palaeogeography, Palaeoclimatology, Palaeoecology, 462, 112-124. https://doi.org/10.1016/j.palaeo.2016.09.010

  • Marr, J. P., Carter, L., Bostock, H. C., Bolton, A., Smith, E., Marr, C., Carter, L., Bostock, H. C., Bolton, A., & Smith, E. (2013). Southwest Pacific Ocean response to a warming world: Using Mg/Ca, Zn/Ca, and Mn/Ca in foraminifera to track surface ocean water masses during the last deglaciation. Paleoceanography, 28(2), 347-362. https://doi.org/10.1002/PALO.20032

  • Martin, P., Moynihan, M. A., Chen, S., Woo, O. Y., Zhou, Y., Nichols, R. S., Chang, K. Y. W., Tan, A. S. Y., Chen, Y. H., Ren, H., & Chen, M. (2022). Monsoon-driven biogeochemical dynamics in an equatorial shelf sea: Time-series observations in the Singapore Strait. Estuarine, Coastal and Shelf Science, 270, Article 107855. https://doi.org/https://doi.org/10.1016/j.ecss.2022.107855

  • Miller, K. G., Browning, J. V., John Schmelz, W., Kopp, R. E., Mountain, G. S., & Wright, J. D. (2020). Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Science Advances, 6(20), Article eaaz1346.

  • Minhat, F. I., Yahya, K., Talib, A., & Ahmad, O. (2014). Benthic foraminiferal distributions as bioindicators in coastal waters of Penang National Park, Malaysia. Journal of Foraminiferal Research, 44(2), 143-150. https://doi.org/10.2113/GSJFR.44.2.143

  • Minhat, F. I., Ghandhi, S. M., Ahzan, N. S. M., Haq, N. A., Manaf, O. A. R. A., Sabohi, S. M., Lee, L. H., Akhir, M. F., & Abdullah, M. M. (2021). The occurrence and distribution of benthic foraminifera in tropical waters along the Strait of Malacca. Frontiers in Marine Science, 8, Article 647531. https://doi.org/10.3389/FMARS.2021.647531

  • Minhat, F. I., Husain, M. L., Satyanarayana, B., Sulaiman, A., & Hasan, S. S. (2018). Current status of modern foraminiferal research in Peninsular and East Malaysia. Journal of Sustainability Science and Management, 13(5), 75-84.

  • Minhat, F. I., Husain, M. L., & Sulaiman, A. (2019). Species composition and distribution data of benthic foraminifera from the Straits of Malacca during the early Holocene. Data in Brief, 25, Article 104214.

  • Minhat, F. I., Satyanarayana, B., Husain, M. L., & Rajan, V. V. V. (2016). Modern benthic foraminifera in subtidal waters of Johor: Implications for holocene sea-level change on the east coast of Peninsular Malaysia. Journal of Foraminiferal Research, 46(4), 347-357. https://doi.org/10.2113/gsjfr.46.4.347

  • Minhat, F. I., Shaari, H., Razak, N. S. A., Satyanarayana, B., Saelan, W. N. W., Yusoff, N. M., & Husain, M. L. (2020). Evaluating performance of foraminifera stress index as tropical-water monitoring tool in Strait of Malacca. Ecological Indicators, 111, Article 106032. https://doi.org/10.1016/j.ecolind.2019.106032

  • Mohtadi, M., Max, L., Hebbeln, D., Baumgart, A., Krück, N., & Jennerjahn, T. (2007). Modern environmental conditions recorded in surface sediment samples off W and SW Indonesia: Planktonic foraminifera and biogenic compounds analyses. Marine Micropaleontology, 65(1-2), 96-112. https://doi.org/10.1016/j.marmicro.2007.06.004

  • Mulitza, S., Dürkoop, A., Hale, W., Wefer, G., & Niebler, H. S. (1997). Planktonic foraminifera as recorders of past surface-water stratification. Geology, 25(4), 335-338. https://doi.org/10.1130/0091-7613(1997)025<0335:PFAROP>2.3.CO;2

  • Oba, T., Kato, M., Kitazato, H., Koizumi, I., Omura, A., Sakai, T., & Takayama, T. (1991). Paleoenvironmental Changes in the Japan Sea During the Last 85,000 Years. Paleoceanography, 6(4), 499-518. https://doi.org/10.1029/91PA00560

  • Oba, T., Horibe, Y., & Kitazato, H. (1980). Analysis of the palaeoenvironment since the last glacial age based on the two cores from the Japan Sea. Kokogaku to Shizen Kagaku, 13, 31-49.

  • Oba, T., & Irino, T. (2012). Sea level at the last glacial maximum, constrained by oxygen isotopic curves of planktonic foraminifera in the Japan Sea. Journal of Quaternary Science, 27(9), 941-947. https://doi.org/10.1002/jqs.2585

  • Parham, P. R. (2016). Late cenozoic relative sea-level highstand record from peninsular malaysia and Malaysian borneo: Implications for vertical crustal movements. Bulletin of the Geological Society of Malaysia, 62, 91-115. https://doi.org/10.7186/BGSM62201612

  • Parham, P. R., Minhat, F. I., Husain, M. L., & Satyanarayana, B. (2014). Review of foraminiferal studies in Nearshore Areas, Peninsular Malaysia. ResearchGate. https://www.researchgate.net/publication/280690887

  • Peeters, F. J. C., Brummer, G. J. A., & Ganssen, G. (2002). The effect of upwelling on the distribution and stable isotope composition of Globigerina bulloides and Globigerinoides ruber (Planktic foraminifera) in modern surface waters of the NW Arabian Sea. Global and Planetary Change, 34(3-4), 269-291. https://doi.org/10.1016/S0921-8181(02)00120-0

  • Ravelo, A. C., & Hillaire-Marcel, C. (2007). The use of oxygen and carbon isotopes of foraminifera in paleoceanography. Developments in Marine Geology, 1, 735-764. https://doi.org/10.1016/S1572-5480(07)01023-8

  • Razak, N., Shaari, H., Minhat, F., Ariffin, E., & Shariful, F. (2022). Benthic foraminifera as environmental indicators in the lagoon and mangrove environments of Langkawi, Malaysia. Research Square. https://doi.org/10.21203/rs.3.rs-1484518/v1

  • Richey, J. N., Thirumalai, K., Khider, D., Reynolds, C. E., Partin, J. W., & Quinn, T. M. (2019). Considerations for globigerinoides ruber (white and pink) paleoceanography: Comprehensive insights from a long-running sediment trap. Paleoceanography and Paleoclimatology, 34(3), 353-373. https://doi.org/10.1029/2018PA003417

  • Ripperger, S., Schiebel, R., Rehkämper, M., & Halliday, A. N. (2008). Cd/Ca ratios of in situ collected planktonic foraminiferal tests. Paleoceanography, 23, Article 3209. https://doi.org/10.1029/2007PA001524ï

  • Rohling, E. J., Foster, G. L., Grant, K. M., Marino, G., Roberts, A. P., Tamisiea, M. E., & Williams, F. (2014). Sea-level and deep-sea-temperature variability over the past 5.3 million years. Nature, 508(7497), 477-482. https://doi.org/10.1038/nature13230

  • Rohling, E J, Sprovieri, M., Cane, T., Casford, J. S. L., Cooke, S., Bouloubassi, I., Emeis, K. C., Schiebel, R., Rogerson, M., Hayes, A., Jorissen, F. J., & Kroon, D. (2004). Reconstructing past planktic foraminiferal habitats using stable isotope data: A case history for Mediterranean sapropel S5. Marine Micropaleontology, 50(1-2), 89-123. https://doi.org/10.1016/S0377-8398(03)00068-9

  • Rohling, E. J., & Cooke, S. (1999). Stable oxygen and carbon isotopes in foraminiferal carbonate shells. In B. K. S. Gupta (Ed.), Modern Foraminifera (pp. 239-258). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-48104-9_14

  • Rohling, E. J., Hibbert, F. D., Williams, F. H., Grant, K. M., Marino, G., Foster, G. L., Hennekam, R., de Lange, G. J., Roberts, A. P., Yu, J., Webster, J. M., & Yokoyama, Y. (2017). Differences between the last two glacial maxima and implications for ice-sheet, δ18O, and sea-level reconstructions. Quaternary Science Reviews, 176, 1-28. https://doi.org/10.1016/J.QUASCIREV.2017.09.009

  • Rosenthal, Y., Lear, C. H., Oppo, D. W., & Linsley, B. K. (2006). Temperature and carbonate ion effects on Mg/Ca and Sr/Ca ratios in benthic foraminifera: Aragonitic species Hoeglundina elegans. Paleoceanography, 21(1), 1-14. https://doi.org/10.1029/2005PA001158

  • Rosenthal, Y., & Linsley, B. (2013). Mg/Ca and Sr/Ca Paleothermometry from Calcareous Marine Fossils. In S. A. Elias & C. J. Mock (Eds.), Encyclopedia of Quaternary Science: Second Edition (pp. 871-883). Elsevier. https://doi.org/10.1016/B978-0-444-53643-3.00290-9

  • Rusli, M. H. B. M. (2012). Protecting vital sea lines of communication: A study of the proposed designation of the Straits of Malacca and Singapore as a particularly sensitive sea area. Ocean & Coastal Management, 57, 79-94. https://doi.org/https://doi.org/10.1016/j.ocecoaman.2011.12.003

  • Salgueiro, E., Voelker, A. H. L., Martin, P. A., Rodrigues, T., Zúñiga, D., Froján, M., de la Granda, F., Villacieros-Robineau, N., Alonso-Pérez, F., Alberto, A., Rebotim, A., González-Álvarez, R., Castro, C. G., & Abrantes, F. (2020). δ18O and Mg/Ca Thermometry in Planktonic Foraminifera: A Multiproxy Approach Toward Tracing Coastal Upwelling Dynamics. Paleoceanography and Paleoclimatology, 35(2), Article e2019PA003726. https://doi.org/10.1029/2019PA003726

  • Sathiamurthy, E., & Rahman, M. (2017). Late Quaternary paleo fluvial system research of Sunda Shelf: A review. Bulletin of the Geological Society of Malaysia, 64, 81-92.

  • Satyanarayana, B., Husain, M. L., Ibrahim, R., Ibrahim, S., & Dahdouh-Guebas, F. (2014). Foraminiferal distribution and association patterns in the mangrove sediments of Kapar and Matang, West Peninsular Malaysia. Journal of Sustainability Science and Management, 9, 32-48.

  • Schmiedl, G. (2019). Use of Foraminifera in Climate Science. Oxford University Press. https://doi.org/10.1093/acrefore/9780190228620.013.735

  • Setiawan, R. Y., Wirasatriya, A., Shaari, H., Setyobudi, E., & Rachman, F. (2017). Assessing the Reliability of planktic foraminifera Ba/Ca as a proxy for salinity off the Sunda Strait. Ilmu Kelautan: Indonesian Journal of Marine Sciences, 22(4), 201-212. https://doi.org/10.14710/ik.ijms.22.4.201-212

  • Shackleton, N. (1967). Oxygen isotope analyses and pleistocene temperatures re-assessed. Nature, 215(5096), 15-17. https://doi.org/10.1038/215015a0

  • Siddall, M., Rohling, E. J., Almogi-Labin, A., Hemleben, C., Meischner, D., Schmelzer, I., & Smeed, D. A. (2003). Sea-level fluctuations during the last glacial cycle. Nature, 423(6942), 853-858. https://doi.org/10.1038/nature01690

  • Spero, H. J. (1998). Life history and stable isotope geochemistry of planktonic foraminifera. The Paleontological Society Papers, 4, 7-36. https://doi.org/10.1017/s1089332600000383

  • Spooner, M. I., Barrows, T. T., De Deckker, P., & Paterne, M. (2005). Palaeoceanography of the Banda Sea, and Late Pleistocene initiation of the Northwest Monsoon. Global and Planetary Change, 49(1-2), 28-46. https://doi.org/10.1016/j.gloplacha.2005.05.002

  • Stanford, J. D., Hemingway, R., Rohling, E. J., Challenor, P. G., Medina-Elizalde, M., & Lester, A. J. (2011). Sea-level probability for the last deglaciation: A statistical analysis of far-field records. Global and Planetary Change, 79(3-4), 193-203. https://doi.org/10.1016/j.gloplacha.2010.11.002

  • Suriadi, R., Parham, P. R., Sapon, N., Satyanarayana, B., & Husain, M. L. (2013, June 8-9). Sub-surface and infaunal foraminifera of Kelantan Delta, east coast of Peninsular Malaysia: Their potential for interpretation of sea level change. In National Geoscience Conference (pp. 1-17). Ipoh, Malaysia.

  • Szarek, R. (2001). Biodiversity and Biogeography of Recent Benthic Foraminiferal Assemblages in the South-Western South China Sea (Sunda Shelf). Christian-Albrechts Universität Kiel.

  • Urey, H. C. (1947). The thermodynamic properties of isotopic substances. Journal of the Chemical Society (Resumed), 0, 562-581. https://doi.org/10.1039/jr9470000562

  • Venancio, I. M., Belem, A. L., Santos, T. P., Lessa, D. O., Albuquerque, A. L. S., Mulitza, S., Schulz, M., & Kucera, M. (2017). Calcification depths of planktonic foraminifera from the southwestern Atlantic derived from oxygen isotope analyses of sediment trap material. Marine Micropaleontology, 136, 37-50. https://doi.org/10.1016/J.MARMICRO.2017.08.006

  • Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J. C., McManus, J. F., Lambeck, K., Balbon, E., & Labracherie, M. (2002). Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Science Reviews, 21(1-3), 295-305. https://doi.org/10.1016/S0277-3791(01)00101-9

  • Wang, P., Li, Q., & Li, C. F. (2014). Paleoceanography and sea-level changes. In P. Wang, Q. Li, & C. F. Li (Eds.), Developments in Marine Geology (Vol. 6, pp. 469-570). Elsevier. https://doi.org/10.1016/B978-0-444-59388-7.00006-8

  • Whitehouse, P. L., & Bradley, S. L. (2013). Eustatic sea-level changes since the last glacial maximum. In S. Elias & C. Mock (Eds.), Encyclopedia of Quaternary Science: Second Edition (pp. 439-451). Elsevier. https://doi.org/10.1016/B978-0-444-53643-3.00131-X

  • Wilson, M. E. J. (2011). SE Asian carbonates: Tools for evaluating environmental and climatic change in equatorial tropics over the last 50 million years. Geological Society Special Publication, 355(1), 347-372. https://doi.org/10.1144/SP355.18

  • Woodson, A. L., Leorri, E., Culver, S. J., Mallinson, D. J., Parham, P. R., Thunell, R. C., Vijayan, V. R., & Curtis, S. (2017). Sea-surface temperatures for the last 7200 years from the eastern Sunda Shelf, South China Sea: Climatic inferences from planktonic foraminiferal Mg/Ca ratios. Quaternary Science Reviews, 165, 13-24.

  • Yahya, K., Shuib, S., Minhat, F. I., Ahmad, O., & Talib, A. (2014). The distribution of benthic foraminiferal assemblages in the north-west coastal region of Malacca Straits, Malaysia. Journal of Coastal Life Medicine, 2(10), 784-790. https://doi.org/10.12980/jclm.2.2014jclm-2014-0061

  • Zachos, J. C., Lohmann, K. C., Walker, J. C. G., & Wise, S. W. (1993). Abrupt climate change and transient climates during the Paleogene: A marine perspective. Journal of Geology, 101(2), 191-213. https://doi.org/10.1086/648216

  • Zhang, P., Zuraida, R., Rosenthal, Y., Holbourn, A., Kuhnt, W., & Xu, J. (2019). Geochemical characteristics from tests of four modern planktonic foraminiferal species in the Indonesian Throughflow region and their implications. Geoscience Frontiers, 10(2), 505-516. https://doi.org/https://doi.org/10.1016/j.gsf.2018.01.011

  • Zhang, P., Zuraida, R., Xu, J., & Yang, C. (2016). Stable carbon and oxygen isotopes of four planktonic foraminiferal species from core-top sediments of the Indonesian throughflow region and their significance. Acta Oceanologica Sinica, 35(10), 63-75. https://doi.org/10.1007/s13131-016-0890-1