e-ISSN 2231-8526
ISSN 0128-7680
Fahad Mohanad Kadhim, Samah Falah Hasan and Sadiq Emad Sadiq
Pertanika Journal of Science & Technology, Volume 30, Issue 4, October 2022
DOI: https://doi.org/10.47836/pjst.30.4.03
Keywords: Carbon fiber, composite material, foot, hybrid material, prosthetic
Published on: 28 September 2022
The foot is an essential part of the components of the prosthesis. Therefore, the selected materials’ mechanical properties, cost, and weight must be considered when manufacturing the prosthetic foot. This study studied the mechanical properties of selected materials used for prosthetic feet. The material chosen is Carbon Fiber, Glass fiber, and hybrid composite material. This study aims to simulate chosen materials to find the optimal material selection for manufacturing prosthetic feet by assuming boundary conditions, reaction forces, design consideration, and application. The simulation was done by the finite element analysis ANSYS-14.5 program. The result of the force plate test shows the ground reaction force equal to 750N at heel strike,700N at mid-stance, and 650N at the toe-off stage. The finite element result shows the maximum Von-Misses stress equal to 119MPa at the toe-off stage, and the hybrid composite material has the maximum safety factor. Furthermore, the results showed that the mechanical properties of the hybrid composite materials are the best, as the yield stress is 560MPa, the ultimate stress is 678MPa, and the modulus of elasticity is 6.2GPa. The result shows that the Hybrid composite material has excellent improvement in mechanical properties such as lightweight, stiffness, high mechanical properties, and cost-efficiency. Hence by considering the body weight of the amputee, gait cycle, and analyzing the material properties, the hybrid composite material is the best suitable should be selected to manufacture foot prostheses.
Abdullah, T. Ş., Murat, Ç., Irfan, K., & Fehim, F. (2019). Optimal material selection for total hip implant: A finite element case study. Arabian Journal for Science and Engineering, 44, 10293-10301.
Annur, D., Utomo, M. S., Asmaria, T., Malau, D. P., Supriadi, S., Suharno, B., Rahyussalim, A. J., Prabowo, Y., & Amal, M. I. (2020). Material selection based on finite element method in customized iliac implant. Materials Science Forum, 1000, 82-89. https://doi.org/10.4028/www.scientific.net/msf.1000.82
Arteaga, O., Terán, H. C., Morales, H., Argüello, E., Erazo, M. I., Ortiz, M., & Morales, J. J. (2020). Design of human knee smart prosthesis with active torque control. International Journal of Mechanical Engineering and Robotics Research, 9(3), 347-352. https://doi.org/10.18178/ijmerr.9.3.347-352
ASTM D638. (2014). Standard test method for tensile properties of plastics. American Society of Testing and Materials. West Conshohocken. https://www.astm.org/d0638-14.html
Awad, F. S., & Kadhim, F. M. (2022). Compare EMG signals by using myo-ware muscle sensor and myo-trace device for measuring the electrical activity of the muscles. In AIP Conference Proceedings (Vol. 2386, No. 1, p. 040009). AIP Publishing LLC. https://doi.org/10.1063/5.0067239
Awad, F. S., Kadhim, F. M., & Aboud, S. W. (2022). Strain and deformation measurement for prosthetic parts using the Arduino microcontroller and strain gauges instruments. International Journal of Mechanical Engineering, 7(1), 1049-1055.
Baker, R. W. (2013). Measuring Walking: A Handbook of Clinical Gait Analysis. Wiley.
Bence, R., & Dávid, P. (2017). Design and analysis of 3D printable foot prosthesis. Periodical Polytechnic Mechanical Engineering, 61(4), 282-287. https://doi.org/10.3311/PPme.11085
Callister, W. D. (2007). Materials Science and Engineering - An Introduction. John Wiley & Sons. Inc.
Delikanli, Y. E., & Kayacan, M. C. (2019). Design, manufacture, and fatigue analysis of lightweight hip implants. Applied Biomaterials & Functional Materials, 17(2), https://doi.org/10.1177/2280800019836830
Dong, C. (2016). Uncertainties in flexural strength of carbon/glass fibre reinforced hybrid epoxy composites. Composites Part B: Engineering, 98, 176-181. https://doi.org/10.1016/j.compositesb.2016.05.035
Estillore, J. V., Dungo, C. A., Guzman, K. N., Maniaul, J. M., & Magdaluyo Jr, E. (2021). Optimal material selection study of prosthetic socket and pylon tube in transtibial prosthesis fabrication. Engineering Research Express, 3(2), Article 025030. https://doi.org/10.1088/2631-8695/ac0094
Gavali, S., L., Gawande, S. H., Patil, S. R., & Yerrawar, R. N. (2016). Experimental stress analysis of hip joint implant for fracture analysis. IOSR Journal of Mechanical & Civil Engineering, 1, 20-31.
Hadi, A. N., & Oleiwi, J. K. (2015). Improving tensile strength of polymer blends as prosthetic foot material reinforcement by carbon fiber. Journal of Material Science & Engineering, 4(2), 2169-0022.
Herbert, N., Simpson, D., Spence, W. D., & Ion, W. (2005). A preliminary investigation into the development of 3-D printing of prosthetic sockets. Journal of Rehabilitation Research & Development, 42(2), 141-146. https://doi.org/10.1682/jrrd.2004.08.0134
Kadhim, F. M., Takhakh, A. M., & Chiad, J. S. (2020a). Modeling and evaluation of smart economic transfemral prosthetic. Defect and Diffusion Forum, 398, 48-53. https://doi.org/10.4028/www.scientific.net/ddf.398.48
Kadhim, F. M., Chiad, J. S., & Enad, M. A. S. (2020b). Evaluation and analysis of different types of prosthetic knee joint used by above knee amputee. Defect and Diffusion Forum, 398, 34-40. https://doi.org/10.4028/www.scientific.net/ddf.39
Kadhim, F. M., Chiad, J. S., & Enad, M. A. S. (2020c). Evaluation and analysis of different types of prosthetic knee joint used by above knee amputee. Defect
and Diffusion Forum Journal, 398, 34-40. https://doi.org/10.4028/www.scientific.net/DDF.398.34
Kadhim, F. M., Takhakh, A. M., & Abdullah, M. A. (2019d). Mechanical properties of polymer with different reinforcement material composite that used for fabricates prosthetic socket. Journal of Mechanical Engineering Research & Developments, 42(4), 118-123. https://doi.org/10.26480/jmerd.04.2019.118.123
Levine, D., Richards, J., & Whittle, M. W. (2012). Whittle’s gait analysis. Elsevier health sciences.
Marable, W. R., Smith, C., Sigurjónsson, B. Þ., Atlason, I. F., & Johannesson, G. A. (2020). Transfemoral socket fabrication method using direct casting: outcomes regarding patient satisfaction with device and services. Canadian Prosthetics & Orthotics Journal, 3(2), Article 6. https://doi.org/10.33137/cpoj.v3i2.34672
Miller, B. A. (2002). Failure analysis and prevention, fatigue failures.
ASM International Handbook, 11, Article 1470.
Mohammed, H. S., & Salman, J. M. (2020). Design and modeling the prosthetic foot from suitable composite materials. American Journal of Engineering and Applied Sciences, 13(3), 516-522. https://doi.org/10.3844/ajeassp.2020.516.522
Monette, D., Dumond, P., Chikhaoui, I., Nichols, P., & Lemaire, E. D. (2020). Preliminary material evaluation of flax fibers for prosthetic socket fabrication. Journal of Biomechanical Engineering, 143(2), Article 021006. https://doi.org/10.1115/1.4048079
Müller, P., & Schiffer, Á. (2020). Human gait cycle analysis using kinect V2 sensor. Pollack Periodica, 15(3), 3-14. https://doi.org/10.1556/606.2020.15.3.1
Naito, K., & Oguma, H. (2017). Tensile properties of novel carbon/glass hybrid thermoplastic composite rods. Composite Structures, 161, 23-31. https://doi.org/10.1016/j.compstruct.2016.11.042
Oleiwi, J. K., & Hadi, A. N. (2021). Properties of materials and models of prosthetic feet: A review. In IOP Conference Series: Materials Science and Engineering (Vol. 1094, No. 1, p. 012151). IOP Publishing. https://doi.org/10.1088/1757-899X/1094/1/012151
Roberts, N. P., & Hart, N. R. (2001). Alternating bending fatigue machine (HSM20), instruction manual. Hi-Tech Ltd. UK, 150, 200-250.
Sakuri, S., Surojo, E., Ariawan, D., & Prabowo, A. R. (2020). Investigation of Agave cantala-based composite fibers as prosthetic socket materials accounting for a variety of alkali and microcrystalline cellulose treatments. Theoretical and Applied Mechanics Letters, 10(6), 405-411. https://doi.org/10.1016/j.taml.2020.01.052
Tao, Z., Ahn, H. J., Lian, C., Lee, K. H., & Lee, C. H. (2017). Design and optimization of prosthetic foot by using polylactic acid 3D printing. Journal of Mechanical Science and Technology, 31(5), 2393-2398. https://doi.org/10.1007/s12206-017-0436-2
Tryggvason, H., Starker, F., Lecomte, C., & Jonsdottir, F. (2020). Use of dynamic FEA for design modification and energy analysis of a variable stiffness prosthetic foot. Applied Sciences, 10(2), Article 650. https://doi.org/10.3390/app10020650
Vitali, A., Regazzoni, D., Rizzi, C., & Colombo, G. (2017). Design and additive manufacturing of lower limb prosthetic socket. In ASME International Mechanical Engineering Congress and Exposition (Vol. 58462, p. V011T15A021). American Society of Mechanical Engineers. https://doi.org/10.1115/imece2017-71494
Wang, X., Meng, Q., Zhang, Z., Sun, J., Yang, J., & Yu, H. (2020). Design and evaluation of a hybrid passive-active knee prosthesis on energy consumption. Mechanical Sciences, 11(2), 425-436. https://doi.org/10.5194/ms-11-425-2020
Yousif, L. E., Resan, K. K., & Fenjan, R. M. (2018). Temperature effect on mechanical characteristics of a new design prosthetic foot. International Journal of Mechanical Engineering and Technology, 9(13), 1431-1447.
Zhang, Z., Yu, H., Cao, W., Wang, X., Meng, Q., & Chen, C. (2021). Design of a semi-active prosthetic knee for transfemoral amputees: Gait symmetry research by simulation. Applied Sciences, 11(12), Article 5328. https://doi.org/10.3390/app11125328
ISSN 0128-7680
e-ISSN 2231-8526