Home / Regular Issue / JST Vol. 30 (4) Oct. 2022 / JST-3295-2021

 

The Kinetic Evaluation and DFT Study of Cis-[Pt(Asc)(NH3)2] Complex as an Inhibitor to Type 2 Diabetic Human Amylase

Khalid Farouk Al-Rawi, Khaldoon Taher Maher, Othman Ibrahim Alajrawy and Firas Taher Maher

Pertanika Journal of Science & Technology, Volume 30, Issue 4, October 2022

DOI: https://doi.org/10.47836/pjst.30.4.25

Keywords: Amylase, cisplatin, inhibition complex, L-ascorbic acid, platinum complexes, T2DM, theoretical calculation

Published on: 28 September 2022

Several metal complexes and organic compounds and extracted herbs that might be involved in the bio-mechanism of the type 2 diabetes mellitus treatments. This research aims to synthesize a new platinum (II) complex and study its kinetics as an inhibitor for freshly purified amylase from type 2 human diabetics. The amylase enzyme was precipitated from diabetic patients. The complex cis-[Pt(Asc)(NH3)2] was synthesized and characterized experimentally and theoretically by DFT calculations to conclude the structure. Both calculations confirmed the square planar geometry for the prepared complex. The results showed that the complex is more stable and polar than the L-ascorbic acid derivative. Therefore, we suggested that the synthesized Pt(II) complex is appropriate to be examined as an inhibitor for the amylase enzyme. Several concentrations from the Pt(II) complex were prepared for kinetic purposes. Kinetic results have shown that the newly prepared complex has a remarkable inhibition effect on the amylase enzyme. Kinetic parameters were fitted using the Lineweaver–Burk plot. The inhibition reaction was confirmed as a non-competitive inhibitor. Also, an inorganic compound derived from vitamin C was prepared and diagnosed by several spectroscopic methods, and a comparison between the experimental and theoretical data was conducted. The DFT study of the prepared complex gave a useful explanation for the complex and its stability. Thus, an inhibitory effect on the activity of the amylase enzyme was clearly shown by the newly prepared Pt(II) complex. It can be concluded that Pt(II) complex could be used as an amylase inhibitor.

  • Adnan, F. (2010). Kinetics and thermodynamic studies of alpha amylase from Bacillus licheniformis mutant. Pakistan Journal of Botany, 42(5), 3507-3516.

  • Albuquerque, T. L. D., Peirce, S., Rueda, N., Marzocchella, A., Gonçalves, L. R. B., Rocha, M. V. P., & Fernandez-Lafuente, R. (2016). Ion exchange of β-galactosidase: the effect of the immobilization pH on enzyme stability. Process Biochemistry, 51(7), 875–880. https://doi.org/10.1016/j.procbio.2016.03.014

  • Al-Qodah, Z. (2007). Determination of kinetic parameters of α-amylase producing thermophile Bacillus sphaericus. African Journal of Biotechnology, 6(6), 699-706.

  • Ali, R., Bulat, K. H. K., Azmi, A. A., & Anuar, S. T. (2019). Theoretical approach of dft b3LYP/6-31G (d, p) on evaluating the performance of tert-butylhydroquinone and free fatty acids in inhibiting the oxidation of palm olein. Journal of Oil Palm Research, 31(1), 122-129. https://doi.org/10.21894/JOPR.2019.0005

  • Ard, D., Tettey, N. S., & Feresu, S. (2020). The influence of family history of type 2 diabetes mellitus on positive health behavior changes among African Americans. International Journal of Chronic Diseases, 2022, Article 8016542. https://doi.org/10.1155/2020/8016542

  • Association, A. D. (2014). Diagnosis and classification of diabetes mellitus. Diabetes Care, 37(Supplement 1), S81-S90. https://doi.org/10.2337/dc14-S081

  • Bakalova, A., Varbanov, H., Stanchev, S., Ivanov, D., & Jensen, F. (2009). DFT study of the structure and spectral behavior of new pt (II) complexes with 5‐methyl‐5 (4‐pyridyl) hydantoin. International Journal of Quantum Chemistry, 109(4), 826-836. https://doi.org/10.1002/qua.21890

  • Bergamini, P., Marchesi, E., Bertolasi, V., Fogagnolo, M., Scarpantonio, L., Manfredini, S., Vertuani, S., & Canella, A. (2008). New coordination modes of L‐ascorbic acid and dehydro‐L‐ascorbic acid as dianionic chelating ligand for platinum. European Journal of Inorganic Chemistry, 2008(4), 529-537. https://doi.org/10.1002/ejic.200700808

  • Bradshaw, M. P., Barril, C., Clark, A. C., Prenzler, P. D., & Scollary, G. R. (2011). Ascorbic acid: A review of its chemistry and reactivity in relation to a wine environment. Critical Reviews in Food Science and Nutrition, 51(6), 479-498. https://doi.org/10.1080/10408391003690559

  • Burhan, A., Nisa, U., Gökhan, C., Ömer, C., Ashabil, A., & Osman, G. (2003). Enzymatic properties of a novel thermostable, thermophilic, alkaline and chelator resistant amylase from an alkaliphilic Bacillus sp. isolate ANT-6. Process Biochemistry, 38(10), 1397-1403. https://doi.org/10.1016/S0032-9592(03)00037-2

  • Caruso, F., Rossi, M., Benson, A., Opazo, C., Freedman, D., Monti, E., Gariboldi, M. B., Shaulky, J., Marchetti, F., & Pettinari, R. (2012). Ruthenium-arene complexes of curcumin: X-ray and density functional theory structure, synthesis, and spectroscopic characterization, in vitro antitumor activity, and DNA docking studies of (p-cymene) Ru (curcuminato) chloro. Journal of Medicinal Chemistry, 55(3), 1072-1081. https://doi.org/ 10.1021/jm200912j

  • Chattaraj, P. K., & Poddar, A. (1999). Molecular reactivity in the ground and excited electronic states through density-dependent local and global reactivity parameters. The Journal of Physical Chemistry A, 103(43), 8691-8699. https://doi.org/10.1021/JP991214+

  • Chen, L., Strohmeier, V., He, Z., Deshpande, M., Catalan-Dibene, J., Durum, S. K., Moran, T. M., Kraus, T., Xiong, H., & Faith, J. J. (2019). Interleukin 22 disrupts pancreatic function in newborn mice expressing IL-23. Nature Communications, 10, Article 4517. https://doi.org/10.1038/s41467-019-12540-8

  • Czarnomysy, R., Surażyński, A., Muszynska, A., Gornowicz, A., Bielawska, A., & Bielawski, K. (2018). A novel series of pyrazole-platinum (II) complexes as potential anti-cancer agents that induce cell cycle arrest and apoptosis in breast cancer cells. Journal of Enzyme Inhibition and Medicinal Chemistry, 33(1), 1006-1023. https://doi.org/10.1080/14756366.2018.1471687

  • Dhote, Y. S., Moharil, M. P., & Jadhav, P. V. (2014). Isolation and characterization of amylase inhibitor from alkalophilic bacteria isolated from lonar crater and its insecticidal protein producing ability. Biosciences, Biotechnology Research Asia, 11(1), 329-333.

  • Duong-Ly, K. C., & Gabelli, S. B. (2014). Salting out of proteins using ammonium sulfate precipitation. Methods in Enzymology, 541, 85-94. https://doi.org/10.1016/B978-0-12-420119-4.00007-0

  • Egan, A. M., & Dinneen, S. F. (2019). What is diabetes? Medicine, 47(1), 1-4. https://doi.org/10.1016/J.MPMED.2018.10.002

  • Elghalban, M. G., El Defarwy, A. M., Shah, R. K., & Morsi, M. A. (2014). α-Furil dioxime: DFT exploration and its experimental application to the determination of palladium by square wave voltammetry. International Journal of Electrochemical Science, 9, 2379-2396.

  • Halim, M., & Halim, A. (2019). The effects of inflammation, aging and oxidative stress on the pathogenesis of diabetes mellitus (type 2 diabetes). Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13(2), 1165-1172. https://doi.org/10.1016/j.dsx.2019.01.040

  • Hames, B. D. (1998). Gel electrophoresis of proteins: A practical approach (3rd Ed.). OUP Oxford.

  • Hollis, L. S., Stern, E. W., Amundsen, A. R., Miller, A. V, & Doran, S. L. (1987). Platinum complexes of vitamin C. NMR studies on the solution chemistry of cis-platinum (diamine)(ascorbate) complexes. Journal of the American Chemical Society, 109(12), 3596-3602. https://doi.org/10.1021/ja00246a016

  • Hong, H. R., Oh, Y. I., Kim, Y. J., & Seo, K. W. (2019). Salivary alpha-amylase as a stress biomarker in diseased dogs. Journal of Veterinary Science, 20(5), Article e46. https://doi.org/10.4142/jvs.2019.20.e46

  • Kalita, D., Holm, D. G., LaBarbera, D. V, Petrash, J. M., & Jayanty, S. S. (2018). Inhibition of α-glucosidase, α-amylase, and aldose reductase by potato polyphenolic compounds. PLoS One, 13(1), Article e0191025. https://doi.org/10.1371/journal.pone.0191025

  • Kumar, S., & Chakravarty, S. (2018). Amylases. In Enzymes in Human and Animal Nutrition (pp. 163-180). Elsevier.

  • López, J. L., Alvarez, F., Príncipe, A., Salas, M. E., Lozano, M. J., Draghi, W. O., Jofré, E., & Lagares, A. (2018). Isolation, taxonomic analysis, and phenotypic characterization of bacterial endophytes present in alfalfa (Medicago sativa) seeds. Journal of Biotechnology, 267, 55-62. https://doi.org/10.1016/j.jbiotec.2017.12.020

  • Maher, F. T., Mukhlis, A. J., Abuod, A. I., & Naji, N. A. (2017). In vivo study of compounds 3-(acetyl Salicyloyl)-5, 6–Oisopropylidene-L-ascorbic acid, 2, 3-(acetyl Salicyloyl)-5, 6–O-isopropylidene-L-ascorbic acid and 2, 3, 5, 6Tetra (acetyl Salicyloyl)-L-ascorbic acid. Ibn Al-Haitham Journal for Pure and Applied Science, 22(2), 1-7.

  • Mahmood, N. (2016). A review of α-amylase inhibitors on weight loss and glycemic control in pathological state such as obesity and diabetes. Comparative Clinical Pathology, 25, 1253-1264. https://doi.org/10.1007/s00580-014-1967-x

  • Mansour, A. M. (2013). Coordination behavior of sulfamethazine drug towards Ru (III) and Pt (II) ions: Synthesis, spectral, DFT, magnetic, electrochemical and biological activity studies. Inorganica Chimica Acta, 394, 436-445. https://doi.org/10.1016/j.ica.2012.08.025

  • McGuire, J. P., Friedman, M. E., & McAuliffe, C. A. (1984). Studies of enzyme inhibition. The interaction of some platinum (II) complexes with fumarase and malate dehydrogenase. Inorganica Chimica Acta, 91(3), 161-165. https://doi.org/10.1016/S0020-1693(00)81806-X

  • Mistry, B. D. (2009). A handbook of spectroscopic data: Chemistry. Oxford.

  • Mohhmod, R. J. (2010). Kinetics of α-amylase enzyme inhuman serum. Journal of Kerbala University, 8(3), 237-244.

  • Oboh, G., Agunloye, O. M., Adefegha, S. A., Akinyemi, A. J., & Ademiluyi, A. O. (2015). Caffeic and chlorogenic acids inhibit key enzymes linked to type 2 diabetes (in vitro): A comparative study. Journal of Basic and Clinical Physiology and Pharmacology, 26(2), 165-170. https://doi.org/10.1515/jbcpp-2013-0141

  • Oboh, G., Isaac, A. T., Akinyemi, A. J., & Ajani, R. A. (2014). Inhibition of key enzymes linked to type 2 diabetes and sodium nitroprusside induced lipid peroxidation in rats’ pancreas by phenolic extracts of avocado pear leaves and fruit. International Journal of Biomedical Science, 10(3), 208-216.

  • Romero-Canelon, I., & Sadler, P. J. (2013). Next-generation metal anticancer complexes: multitargeting via redox modulation. Inorganic Chemistry, 52(21), 12276-12291. https://doi.org/10.1021/ic400835n

  • Sabounchei, S. J., Shahriary, P., Salehzadeh, S., Gholiee, Y., Nematollahi, D., Chehregani, A., Amani, A., & Afsartala, Z. (2015). Pd (II) and Pd (IV) complexes with 5-methyl-5-(4-pyridyl) hydantoin: Synthesis, physicochemical, theoretical, and pharmacological investigation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 135, 1019-1031. https://doi.org/10.1016/j.saa.2014.08.002

  • Salomon, L. L. (1963). Preparation of 5, 6-O-isopropylidene-L-ascorbic acid. Experientia, 19(12), 619-620. https://doi.org/10.1007/BF02151276

  • Silano, V., Barat Baviera, J. M., Bolognesi, C., Cocconcelli, P. S., Crebelli, R., Gott, D. M., Grob, K., Lambré, C., & Lampi, E. (2020). Safety evaluation of the food enzyme α‐amylase from the genetically modified Bacillus licheniformis strain DP‐Dzb45. EFSA Journal, 17(6), Article e06311. https://doi.org/10.2903/j.efsa.2019.5738

  • Silverstein, R. M., Webster, F. X., & Kiemle, D. J. (2005). Spectrometric Identification of Organic Compounds, 7th Edition. John Wiley & Sons. Inc.

  • Soliman, A. A., Alajrawy, O. I., Attaby, F. A., & Linert, W. (2016). New binary and ternary platinum (II) formamidine complexes: Synthesis, characterization, structural studies and in-vitro antitumor activity. Journal of Molecular Structure, 1115, 17-32. https://doi.org/10.1016/J.MOLSTRUC.2016.02.073

  • Tilley, L. P., & Smith Jr, F. W. K. (2015). Blackwell’s five-minute veterinary consult: Canine and feline. John Wiley & Sons.

  • Varley, H., Gowenlock, A. H., McMurray, J. R., & McLauchlan, D. M. (1988). Varley’s practical clinical biochemistry. Heinemann Medical Books.

  • Whitcomb, D. C., & Lowe, M. E. (2007). Human pancreatic digestive enzymes. Digestive Diseases and Sciences, 52(1), 1-17. https://doi.org/10.1007/s10620-006-9589-z.

  • Υαlςιn, G. (1995). Studies on cis-DDP,[Pt (Dach)(MePhSO) Cl]+ and [Pt (NH3) 2 (N-Py) Cl]+ binding to fumarase. Drug Metabolism and Drug Interactions, 12(2), 105-116. https://doi.org/10.1515/DMDI.1995.12.2.105.

  • Yang, H., Liu, L., Wang, M., Li, J., Wang, N. S., Du, G., & Chen, J. (2012). Structure-based engineering of methionine residues in the catalytic cores of alkaline amylase from Alkalimonas amylolytica for improved oxidative stability. Applied and Environmental Microbiology, 78(21), 7519-7526. https://doi.org/10.1128/AEM.01307-12

  • Yu, H. (2019). Kiwifruit effects on starch digestion by salivary amylase under simulated gastric conditions (Master dissertation). University of Otago, New Zealand. http://hdl.handle.net/10523/9448

  • Zhao, Y., Ouyang, X., Chen, J., Zhao, L., & Qiu, X. (2018). Separation of aromatic monomers from oxidatively depolymerized products of lignin by combining Sephadex and silica gel column chromatography. Separation and Purification Technology, 191, 250-256. https://doi.org/10.1016/j.seppur.2017.09.039

  • Zümreoglu-Karan, B. (2006). The coordination chemistry of vitamin C: An overview. Coordination Chemistry Reviews, 250(17-18), 2295-2307. https://doi.org/10.1016/j.ccr.2006.03.002

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-3295-2021

Download Full Article PDF

Share this article

Recent Articles