e-ISSN 2231-8526
ISSN 0128-7680
Siti Kudnie Sahari, Mohd. Zulhilmi Firdaus Rosli, Amir Maina Butit, Kuryati Kipli, Martin Anyi, Asmahani Awang, Marini Sawawi, Mohamad Rusop Mahmood, Lilik Hasanah, Abdul Rahman Kram, Zaidi Embong and Hafsah Nahrawi
Pertanika Journal of Science & Technology, Volume 30, Issue 2, April 2022
DOI: https://doi.org/10.47836/pjst.30.2.14
Keywords: Activated carbon, copper, DC-DC boost converter, graphite, soil microbial fuel cell (SMFC), zinc
Published on: 1 April 2022
This paper presents a Single-chamber Microbial Fuel Cell (SMFC) design by utilizing soil as a substrate with two sets of electrode combinations, which are graphite-activated carbon and copper-zinc of different sizes. It was found that graphite and activated carbon produced greater power density compared to copper and zinc. Moreover, it was observed that the graphite-activated carbon cloth electrode with a bigger surface area of 51cm2, resulted in a higher power density of 904mW/m2. To further improve the voltage production of this model, four SMFCs were stacked in series and connected to a DC-DC boost converter to increase the voltage to 1.482 V for the copper-zinc electrode and 1.722 V for the graphite-activated carbon electrode, respectively, which was sufficient to light up an LED light.
Birjandi, N., Younesi, H., Ghoreyshi, A. A., & Rahimnejad, M. (2016). Electricity generation through degradation of organic matters in medicinal herbs wastewater using bio-electro-Fenton system. Journal of Environmental Management, 180, 390-400. https://doi.org/10.1016/j.jenvman.2016.05.073
Choi, C., & Cui, Y. (2012). Recovery of silver from wastewater coupled with power generation using a microbial fuel cell. Bioresource Technology, 107, 522-525. https://doi.org/10.1016/j.biortech.2011.12.058
Cao, Y., Mu, H., Liu, W., Zhang, R., Guo, J., Xian, M., & Liu, H. (2019). Electricigens in the anode of microbial fuel cells: pure cultures versus mixed communities. Microbial Cell Factories, 18, Article 39. https://doi.org/10.1186/s12934-019-1087-z
Eom, H., Joo, H. J., Kim, S. C., & Kim, S. S. (2020). Properties of carbon-based nanofiber with Pd and its application to microbial fuel cells electrode. Environmental Technology & Innovation, 19, Article 100800. https://doi.org/10.1016/j.eti.2020.100800
Ghanem, M. M., Mohamed, O., Wassal, A., & Kotb, A. A. (2016). Microbial fuel cell for electricity generation and wastewater treatment. International Journal of Sustainable and Green Energy, 5(3), 40-45. https://doi.org/10.11648/j.ijrse.20160503.12
IEA. (2019). Electricity information overview: Technical report. France International Energy Agency.
Khan, M. Z., Singh, S., Sultana, S., Sreekrishnan, T. R., & Ahammad, S. Z. (2015). Studies on the biodegradation of two different azo dyes in bioelectrochemical systems. New Journal of Chemistry, 39(7), 5597-5604. https://doi.org/10.1039/C5NJ00541H
Khan, N., Anwer, A. H., Ahmad, A., Sabir, S., Sevda, S., & Khan, M. Z. I. (2020). Investigation of CNT/PPy-modified carbon paper electrodes under anaerobic and aerobic conditions for phenol bioremediation in microbial fuel cells. ACS Omega, 5, 471-480. https://doi.org/10.1021/acsomega.9b0298
Kook, L., Nemestóthy, N., Bélafi-Bakó, K., & Bakonyi, P. (2021). The influential role of external electrical load in microbial fuel cells and related improvement strategies: A review. Bioelectrochemistry, 40, Article 107749. https://doi.org/10.1016/j.bioelechem.2021.107749
Li, F., Jin, C., Choi, C., & Lim, B. (2019). Simultaneous removal and/or recovery of Cr (VI) and Cr (III) using a double MFC technique. Environmental Engineering & Management Journal (EEMJ), 18, 1-9.
Liu, H., Ramnarayanan, R., & Logan, B. E. (2004). Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environmental Science & Technology, 38(7), 2281-2285. https: //doi.org/10.1021/es034923g
Liu, X. W., Huang, Y. X., Sun, X. F., Sheng, G. P., Zhao, F., Wang, S. G., & Yu, H. Q. (2014). Conductive carbon nanotube hydrogel as a bioanode for enhanced microbial electrocatalysis. ACS Applied Materials & Interfaces, 6(11), 8158-8164. https://doi.org/10.1021/am500624k
Liu, L., Chou, T. Y., Lee, C. Y., Lee, D. J., Su, A., & Lai, J. Y. (2016). Performance of freshwater sediment microbial fuel cells: Consistency. International Journal of Hydrogen Energy, 41(7), 4504-4508. https://doi.org/10.1016/j.ijhydene.2015.07.139
Liu, Y., Song, P., Gai, R., Yan, C., Jiao, Y., Yin, D., Cai, L., & Zhang, L. (2019). Recovering platinum from wastewater by charring biofilm of microbial fuel cells (MFCs). Journal of Saudi Chemical Society, 23(3), 338-345. https://doi.org/10.1016/j.jscs.2018.08.003
Luo, H., Xu, G., Lu, Y., Liu, G., Zhang, R., Li, X., Zheng, Z., & Yu, M. (2017). Electricity generation in a microbial fuel cell using yogurt wastewater under alkaline conditions. RSC Advances, 7(52), 32826-32832. https://doi.org/10.1039/C7RA06131E
Marashi, F., & Kariminia, H. (2015). Performance of a single chamber microbial fuel cell at different organic loads and pH values using purified terephthalic acid wastewater. Journal of Environmental Health Science and Engineering, 13, Article 27. https://doi.org/10.1186/s40201-015-0179-x
Prabowo, A. K., Tiarasukma, A. P., Christwardana, M., & Ariyanti, D. (2016) . Microbial fuel cells for simultaneous electricity generation and organic degradation from slaughterhouse wastewater. Journal of Renewable Energy Development, 5(2), 107-112. https://doi.org/10.14710/ijred.5.2.107-112
Qian, F., & Morse, D. E. (2011). Miniaturizing microbial fuel cells. Trends in Biotechnology, 29(2), 62-69. https://doi.org/10.1016/j.tibtech.2010.10.003
Qiao, Y., Wen, G. Y., Wu, X. S., & Zou, L. (2015). L-Cysteine tailored porous graphene aerogel for enhanced power generation in microbial fuel cells. RSC Advances, 5(72), 58921-58927. https://doi.org/10.1039/C5RA09170E
Rabaey, K., Lissens, G., & Verstraete, W. (2005). Microbial fuel cells: Performances and perspectives. In Biofuels for fuel cells: renewable energy from biomass fermentation (pp. 377-399). IWA Publishing.
Sadeqzadeh, M., Mostafa, G., Ghannadzadeh, A., Babak, S., Tahereh, J., Wan, R., & Hassan, S. H. A. (2012). Mass transfer limitation in different anode electrode surface areas on the performance of dual chamber Microbial Fuel Cell. American Journal of Biochemistry and Biotechnology, 8(4), 320-325. https://doi.org/10.3844/ajbbsp.2012.320.325
Saravanan, N., & Karthikeyan, M. (2018). Study of single chamber and double chamber efficiency and losses of wastewater treatment. International Research Journal of Engineering and Technology, 5(3), 1225-1230.
Sokol, N. W., & Bradford, M. A. (2019). Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nature Geoscience, 12(1), 46-53. https://doi.org/10.1038/s41561-018-0258-6
Tremouli, A., Greenman, J., & Ieropoulos, I. (2018). Investigation of ceramic MFC stacks for urine energy extraction. Bioelectrochemistry, 123, 19-25. https://doi.org/10.1016/j.bioelechem.2018.03.010
Tremouli, A., Martinos, M., & Lyberatos, G. (2017). The effects of salinity, pH and temperature on the performance of a microbial fuel cell. Waste and Biomass Valorization, 8(6), 2037-2043. https://doi.org/10.1007/s12649-016-9712-0
Uddin, S. S., Roni, K. S., Kabir, F., Uddin, S. N., & Shatil, A. H. (2019). Comparison of current density and power density obtained from a double chamber microbial fuel cell for different sludges. In 2019 International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST) (pp. 180-185). IEEE Publishing. https://doi.org/10.1109/ICREST.2019.8644198
Ullah, Z., & Zeshan, S.(2020). Effect of substrate type and concentration on the performance of a double chamber microbial fuel cell. Water Science and Technology, 81(7), 1336-1344. https: //doi.org/10.2166/wst.2019.387
Watson, V. J., Delgado, C. N., & Logan, B. E. (2013). Influence of chemical and physical properties of activated carbon powders on oxygen reduction and microbial fuel cell performance. Environmental Science & Technology, 47(2), 6704-6710. https://doi.org/10.1021/es401722j
Yang, W., Kim, K. Y., Saikaly, P. E., & Logan, B. E. (2017). The impact of new cathode materials relative to baseline performance of microbial fuel cells all with the same architecture and solution chemistry. Energy & Environmental Science, 10(5), 1025-1033. https://doi.org/10.1039/C7EE00910K
You, S., Zhao, Q., Zhang, J., Jiang, J., Wan, C., Du, M., & Zhao, S. (2007). A graphite-granule membrane-less tubular air-cathode microbial fuel cell for power generation under continuously operational conditions. Journal of Power Sources, 173(1), 172-177.
Yu, D., Wang, G., Xu, F., & Chen, L. (2012). Constitution and optimization on the performance of microbial fuel cell based on sulfate-reducing bacteria. Energy Procedia, 16, 1664-1670.
Zhao, C., Wang, Y., Shi, F., Zhang, J., & Zhu, J. J. (2013). High biocurrent generation in Shewanella-inoculated microbial fuel cells using ionic liquid functionalized graphene nanosheets as an anode. Chemical Communications, 49(59), 6668-6670. https://doi.org/10.1039/C3CC42068J
Zhao, N., Angelidaki, I., & Zhang, Y. (2017). Electricity generation and microbial community in response to short-term changes in stack connection of self-stacked submersible microbial fuel cell powered by glycerol. Water Research, 109, 367-374. https://doi.org/10.1016/j.watres.2016.11.064.
ISSN 0128-7680
e-ISSN 2231-8526