Home / Regular Issue / JST Vol. 30 (3) Jul. 2022 / JST-2995-2021

 

Synthesis, Characterisation, and Electrochemical Impedance Spectroscopy Study of Green and Sustainable Polyurethane Acrylate from Jatropha Oil Using a Three Step Process

Kai Ling Chai, Min Min Aung, Hong Ngee Lim, Ikhwan Syafiq Mohd Noor, Luqman Chuah Abdullah and Hiroshi Uyama

Pertanika Journal of Science & Technology, Volume 30, Issue 3, July 2022

DOI: https://doi.org/10.47836/pjst.30.3.21

Keywords: Jatropha oil, polyurethane acrylate

Published on: 25 May 2022

Bio-based polymer is a promising candidate to substitute conventional petroleum-derived polymer as it is sustainably produced from renewable resources, which helps reduce the production process’ carbon footprint. It also helps reduces humankind’s dependability on fossil fuel-based feedstock. In this work, a sustainable jatropha oil-based polyurethane acrylate (PUA) was successfully prepared and synthesised using a 3-steps process; epoxidation (formation of an epoxy group), hydroxylation (addition of–OH group to opened ring), and acrylation (addition of acrylate group into polyol). The yellowish PUA prepared has a gel consistency, which is sticky and slightly runny. The PUA was characterised by using wet chemical tests such as oxirane oxygen content (OOC), acid value (AV), hydroxyl number (OHV) and iodine value. OOC value for the PUA synthesised was 4.23 % at the 5 hr reaction time. At the same time, the Epoxidised jatropha oil (EJO) used to prepare polyol records a hydroxyl number of hydroxyl 185.81 mg KOH/g and an acid value of 1.06. The polyol prepared was mixed with 2, 4-toluene-diisocyanate (TDI) and Hydroetyhlmethacrylate (HEMA) to produce PUA. The PUA was characterised by thermogravimetry analysis (TGA) and electrochemical impedance spectroscopy (EIS). TGA analysis shows that the polymer is stable up to 373 K, whereas the EIS analysis records an ionic conductivity of (5.60±0.03) × 10-6 S cm-1. This polymer’s great thermal stability properties make it suitable for outdoor application where high temperature due to sun exposure is common. Furthermore, PUA prepared gel-like properties to make it a suitable candidate for preparing a gel polymer electrolyte.

  • Adachi, T., & Sakka, S. (1988). The role of N,N-dimethylformamide, a DCCA, in the formation of silica gel monoliths by sol-gel method. Journal of Non-Crystalline Solids, 99(1), 118-128. https://doi.org/10.1016/0022-3093(88)90464-4

  • Adam, N. I., Hanibah, H., Subban, R. H. Y., Kassim, M., Mobarak, N. N., Ahmad, A., Badri, K. H., & Su’ait, M. S. (2020). Palm-based cationic polyurethane membranes for solid polymer electrolytes application: A physico-chemical characteristics studies of chain-extended cationic polyurethane. Industrial Crops and Products, 155, Article 112757. https://doi.org/10.1016/j.indcrop.2020.112757

  • Ahvazi, B., Cloutier, É., Wojciechowicz, O., & Ngo, T. D. (2016). Lignin profiling: A guide for selecting appropriate lignins as precursors in biomaterials development. ACS Sustainable Chemistry and Engineering, 4(10), 5090-5105. https://doi.org/10.1021/acssuschemeng.6b00873

  • Akbar, E., Yaakob, Z., Kamarudin, S. K., Ismail, M., & Salimon, J. (2009). Characteristic and composition of Jatropha curcas oil seed from Malaysia and its potential as biodiesel feedstock feedstock. European Journal of Scientific Research, 29(3), 396-403.

  • Amri, M. R., Al-Edrus, S. S. O., Guan, C. T., Yasin, F. M., & Hua, L. S. (2021). Jatropha Oil as a substituent for palm oil in biobased polyurethane. International Journal of Polymer Science, 2021, Article 6655936. https://doi.org/10.1155/2021/6655936

  • Ainie, K., Siew, W. L., & Tan, Y. A. (2004). Test methods - A compendium of test on palm oil products, palm kernel products, fatty acids, food related products and others. Malaysian Palm Oil Board.

  • Chai, K. L., Noor, I. M., Aung, M. M., Abdullah, L. C., & Kufian, M. Z. (2020). Non-edible oil based polyurethane acrylate with tetrabutylammonium iodide gel polymer electrolytes for dye-sensitized solar cells. Solar Energy, 208, 457-468. https://doi.org/10.1016/j.solener.2020.08.020

  • Chua, K. Y., Azzahari, A. D., Abouloula, C. N., Sonsudin, F., Shahabudin, N., & Yahya, R. (2020). Cellulose-based polymer electrolyte derived from waste coconut husk: Residual lignin as a natural plasticizer. Journal of Polymer Research, 27(5), 1-14. https://doi.org/10.1007/s10965-020-02110-8

  • Daud, F. N., Ahmad, A., & Badri, K. H. (2015). Characterisations of palm-based polyurethane solid polymer electrolyte. In Advanced Materials Research (Vol. 1107, pp. 163-167). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/amr.1107.163

  • Desappan, V., Priyadarshini, M., Preethi, K. K., Kumar, K. T., Vediappan, K., Chandrabose, R. S., & Viswanathan, J. (2019). Thermal and electrochemical investigation of neem oil based novel polyurethane/polyvinylpyrrolidone solid polymer electrolytes. Analytical and Bioanalytical Electrochemistry, 11(7), 851-876.

  • Du, Z., Su, Y., Qu, Y., Zhao, L., Jia, X., Mo, Y., Yu, F., Du, J., & Chen, Y. (2019). A mechanically robust, biodegradable and high performance cellulose gel membrane as gel polymer electrolyte of lithium-ion battery. Electrochimica Acta, 299, 19-26. https://doi.org/10.1016/j.electacta.2018.12.173

  • Fu, J., Yu, H., Wang, L., Lin, L., & Khan, R. U. (2020). Preparation and properties of UV-curable hyperbranched polyurethane acrylate hard coatings. Progress in Organic Coatings, 144, Article 105635. https://doi.org/10.1016/j.porgcoat.2020.105635

  • Goud, V. V., Dinda, S., Patwardhan, A. V., & Pradhan, N. C. (2010). Epoxidation of Jatropha (Jatropha curcas) oil by peroxyacids. Asia-Pacific Journal of Chemical Engineering, 5(2), 346-354. https://doi.org/10.1002/apj.285

  • Hazmi, A. S. A., Aung, M. M., Abdullah, L. C., Salleh, M. Z., & Mahmood, M. H. (2013). Producing jatropha oil-based polyol via epoxidation and ring opening. Industrial Crops and Products, 50, 563-567. https://doi.org/10.1016/j.indcrop.2013.08.003

  • Hernández-Cruz, M. C., Meza-Gordillo, R., Domínguez, Z., Rosales-Quintero, A., Abud-Archila, M., Ayora-Talavera, T., & Villalobos-Maldonado, J. J. (2021). Optimization and characterization of in situ epoxidation of chicken fat with peracetic acid. Fuel, 285, Article 119127. https://doi.org/10.1016/j.fuel.2020.119127

  • Holdt, S. L., & Kraan, S. (2011). Bioactive compounds in seaweed: Functional food applications and legislation. Journal of Applied Phycology, 23(3), 543-597. https://doi.org/10.1007/s10811-010-9632-5

  • Huo, P., Ni, S., Hou, P., Xun, Z., Liu, Y., & Gu, J. (2019). A crosslinked soybean protein isolate gel polymer electrolyte based on neutral aqueous electrolyte for a high-energy-density supercapacitor. Polymers, 11(5), Article 863. https://doi.org/10.3390/polym11050863

  • Ibrahim, S., Ahmad, A., & Mohamed, N. S. (2015). Synthesis and characterization of castor oil-based polyurethane for potential application as host in polymer electrolytes. Bulletin of Materials Science, 38(5), 1155-1161. https://doi.org/10.1007/s12034-015-0995-8

  • Ibrahim, S., Ahmad, A., & Mohamed, N. S. (2018). Comprehensive studies on polymer electrolyte and dye-sensitized solar cell developed using castor oil-based polyurethane. Journal of Solid State Electrochemistry, 22(2), 461-470. https://doi.org/10.1007/s10008-017-3775-0

  • Ling, C. K., Aung, M. M., Rayung, M., Abdullah, L. C., Lim, H. N., & Noor, I. S. M. (2019). Performance of ionic transport properties in vegetable oil-based polyurethane acrylate gel polymer electrolyte. ACS Omega, 4(2), 2554-2564. https://doi.org/10.1021/acsomega.8b02100

  • Lobregas, M. O. S., & Camacho, D. H. (2019). Gel polymer electrolyte system based on starch grafted with ionic liquid: Synthesis, characterization and its application in dye-sensitized solar cell. Electrochimica Acta, 298, 219-228. https://doi.org/10.1016/j.electacta.2018.12.090

  • Mangaraj, S., Yadav, A., Bal, L. M., Dash, S. K., & Mahanti, N. K. (2019). Application of biodegradable polymers in food packaging industry: A comprehensive review. Journal of Packaging Technology and Research, 3(1), 77-96. https://doi.org/10.1007/s41783-018-0049-y

  • Mendes-Felipe, C., Barbosa, J. C., Gonçalves, S., Pereira, N., Costa, C. M., Vilas-Vilela, J. L., & Lanceros-Mendez, S. (2020). High dielectric constant UV curable polyurethane acrylate/indium tin oxide composites for capacitive sensing. Composites Science and Technology, 199, Article 108363. https://doi.org/10.1016/j.compscitech.2020.108363

  • Meyer, P., Techaphattana, N., Manundawee, S., Sangkeaw, S., Junlakan, W., & Tongurai, C. (2008). Epoxidation of soybean oil and Jatropha oil. Thammasat International Journal of Science and Technology, 13, 1-5.

  • Mohamed, M., Assem, Y., & Ramadan, A. (2020). Soybean oil-based polyol as a modified natural binder for polyurethane turf-adhesive. Egyptian Journal of Chemistry, 64(2), 4-6. https://doi.org/10.21608/ejchem.2020.31470.2670

  • Mohanty, A. K., Misra, M., & Drzal, L. T. (2005). Natural fibers, biopolymers, and biocomposites. CRC press. https://doi.org/10.1201/9780203508206.ch1

  • Mohiuddin, M., Kumar, B., & Haque, S. (2017). Biopolymer composites in photovoltaics and photodetectors. In K. K. Sadasivuni, D. Ponnamma, J. Kim, J. J. Cabibihan & M. A. AlMaadeed (Eds.), Biopolymer composites in electronics (pp. 459-486). Elsevier. https://doi.org/10.1016/B978-0-12-809261-3.00017-6

  • Mudri, N. H., Abdullah, L. C., Aung, M. M., Salleh, M. Z., Biak, D. R. A., & Rayung, M. (2020). Comparative study of aromatic and cycloaliphatic isocyanate effects on physico-chemical properties of bio-based polyurethane acrylate coatings. Polymers, 12(7), Article 1494. https://doi.org/10.3390/polym12071494

  • Nagalakshmaiah, M., Afrin, S., Malladi, R. P., Elkoun, S., Robert, M., Ansari, M. A., Svedberg, A., & Karim, Z. (2018). Biocomposites: Present trends and challenges for the future. In Green composites for automotive applications (pp. 197-215). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102177-4.00009-4

  • Nan, J., Zhang, G., Wang, L., Wang, H., Chu, F., & Wang, C. (2020). Preparation of ionic liquid-based gel electrolytes and application in supercapacitors. Chemistry and Industry of Forest Products, 40(4), 17-23. https://doi.org/10.3969/j.issn.0253-2417.2020.04.003

  • Ogino, M., Kotatha, D., Torii, Y., Shinomiya, K., Uchida, S., Furuike, T., Tamura, H., & Ishikawa, M. (2020). Preparation and electrochemical performance of chitosan-based gel polymer electrolyte containing ionic liquid for non-aqueous electric double layer capacitor. Electrochemistry, 88(3), 132-138. https://doi.org/10.5796/electrochemistry.20-63009

  • Park, C. K., Lee, J. H., Kim, I. S., & Kim, S. H. (2020). Castor oil-based polyols with gradually increasing functionalities for biopolyurethane synthesis. Journal of Applied Polymer Science, 137(4), Article 48304. https://doi.org/10.1002/app.48304

  • Rayung, M., Aung, M. M., Ahmad, A., Su’ait, M. S., Abdullah, L. C., & Jamil, S. N. A. M. (2019). Characteristics of ionically conducting jatropha oil-based polyurethane acrylate gel electrolyte doped with potassium iodide. Materials Chemistry and Physics, 222, 110-117. https://doi.org/10.1016/j.matchemphys.2018.10.009

  • Rayung, M., Aung, M. M., Su’Ait, M. S., Abdullah, L. C., Ahmad, A., & Lim, H. N. (2020). Performance analysis of jatropha oil-based polyurethane acrylate gel polymer electrolyte for dye-sensitized solar cells. ACS Omega, 5(24), 14267-14274. https://doi.org/10.1021/acsomega.9b04348

  • Saalah, S., Abdullah, L. C., Aung, M. M., Salleh, M. Z., Biak, D. R. A., Basri, M., & Jusoh, E. R. (2015). Waterborne polyurethane dispersions synthesized from jatropha oil. Industrial Crops and Products, 64, 194-200. https://doi.org/10.1016/j.indcrop.2014.10.046

  • Saalah, S., Abdullah, L. C., Aung, M. M., Salleh, M. Z., Biak, D. R. A., Basri, M., Jusoh, E. R., Mamat, S., & Al Edrus, S. S. O. (2021). Chemical and thermo-mechanical properties of waterborne polyurethane dispersion derived from jatropha oil. Polymers, 13(5), Article 795. https://doi.org/10.3390/polym13050795

  • Sammaiah, A., Padmaja, K. V., & Prasad, R. B. N. (2014). Synthesis of epoxy jatropha oil and its evaluation for lubricant properties. Journal of Oleo Science, 63(6), 637-643. https://doi.org/10.5650/jos.ess13172

  • Saurabh, T., Patnaik, M., Bhagst, S. L., & Renge, V. (2011). Epoxidation of vegetable oils: A review. International Journal of Advanced Engineering Technology E, 2(4), 491-501.

  • Sharmin, E., Zafar, F., Akram, D., Alam, M., & Ahmad, S. (2015). Recent advances in vegetable oils based environment friendly coatings: A review. Industrial Crops and Products, 76, 215-229. https://doi.org/10.1016/j.indcrop.2015.06.022

  • Siracusa, V., Rocculi, P., Romani, S., & Rosa, M. D. (2008). Biodegradable polymers for food packaging: A review. Trends in Food Science and Technology, 19(12), 634-643. https://doi.org/10.1016/j.tifs.2008.07.003

  • Somani, K. P., Kansara, S. S., Patel, N. K., & Rakshit, A. K. (2003). Castor oil based polyurethane adhesives for wood-to-wood bonding. International Journal of Adhesion and Adhesives, 23(4), 269-275. https://doi.org/10.1016/S0143-7496(03)00044-7

  • Su’Ait, M. S., Ahmad, A., Badri, K. H., Mohamed, N. S., Rahman, M. Y. A., Ricardo, C. L. A., & Scardi, P. (2014). The potential of polyurethane bio-based solid polymer electrolyte for photoelectrochemical cell application. International Journal of Hydrogen Energy, 39(6), 3005-3017. https://doi.org/10.1016/j.ijhydene.2013.08.117

  • Tiwari, T., Kumar, M., Yadav, M., & Srivastava, N. (2019). Study of arrowroot starch-based polymer electrolytes and its application in MFC. Starch-Stärke, 71(7-8), Article 1800313. https://doi.org/10.1002/star.201800313

  • Unal, S., Oguz, C., Yilgor, E., Gallivan, M., Long, T. E., & Yilgor, I. (2005). Understanding the structure development in hyperbranched polymers prepared by oligomeric A2+B3approach: Comparison of experimental results and simulations. Polymer, 46(13), 4533-4543. https://doi.org/10.1016/j.polymer.2005.03.073

  • Wang, C. S., Yang, L. T., Ni, B. L., & Shi, G. (2009). Polyurethane networks from different soy-based polyols by the ring opening of epoxidized soybean oil with methanol, glycol, and 1,2-propanediol. Journal of Applied Polymer Science, 114(1), 125-131. https://doi.org/10.1002/app.30493

  • Wannatong, L., Sirivat, A., & Supaphol, P. (2004). Effects of solvents on electrospun polymeric fibers: Preliminary study on polystyrene. Polymer International, 53(11), 1851-1859. https://doi.org/10.1002/pi.1599

  • Wei, D., Liao, B., Yong, Q., Li, T., Wang, H., Huang, J., & Pang, H. (2018). Castor oil based hyperbranched urethane acrylates and their performance as UV-curable coatings. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 55(5), 422-432. https://doi.org/10.1080/10601325.2018.1453263

  • Zhang, C., Garrison, T. F., Madbouly, S. A., & Kessler, M. R. (2017). Recent advances in vegetable oil-based polymers and their composites. Progress in Polymer Science, 71, 91-143. https://doi.org/10.1016/j.progpolymsci.2016.12.009

  • Zulkifli, A. M., Said, N. I. A. M., Aziz, S. B., Dannoun, E. M. A., Hisham, S., Shah, S., Bakar, A. A., Zainal, Z. H., Tajuddin, H. A., Hadi, J. M., Brza, M. A., Saeed, S. R., & Amin, P. O. (2020). Characteristics of dye-sensitized solar cell assembled from modified chitosan-based gel polymer electrolytes incorporated with potassium iodide. Molecules, 25(18), Article 4115. https://doi.org/10.3390/molecules2518411522 JST-3029-2021

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-2995-2021

Download Full Article PDF

Share this article

Recent Articles