Home / Regular Issue / JST Vol. 29 (3) Jul. 2021 / JST-2457-2021

 

Numerical Simulations and Experimental Validation on LBW Bead Profiles of Ti-6Al-4V Alloy

Harish Mooli, Srinivasa Rao Seeram, Satyanarayana Goteti and Nageswara Rao Boggarapu

Pertanika Journal of Science & Technology, Volume 29, Issue 3, July 2021

DOI: https://doi.org/10.47836/pjst.29.3.32

Keywords: Beam diameter, frequency, power, pulse width, weld bead

Published on: 31 July 2021

The lightweight titanium alloys possess good resistance to corrosion and temperature. They are used in turbine engines and aircraft structures. The strength of weld joint is dependent on thermal history in the weld zone and the weld bead geometry. The quality of weld can be improved by specifying the optimal welding parameters. Trial-and-error experimental methods are time-consuming and expensive. This paper deals with Computational Fluid Dynamics (CFD) models to carry out three-dimensional thermo-fluid analysis. Buoyancy and Marnangoni stress are incorporated. Temperature dependent properties of Ti-6Al-4V alloy and the process conditions are specified for generating the weld bead profile. The CFD model is validated initially through comparison of existing test data. Further studies are made by conducting tests on the pulsating laser welding of Ti-6Al-4V alloy. The effects of welding speed, pulse width and pulse frequency on the weld bead geometry are examined. This study confirms the adequacy of modeling and simulations of weld bead geometry with test results.

  • Akbari, M., Saedodin, S., Toghraie, D., Shoja-Razavi, R., & Kowsari, F. (2014). Experimental and numerical investigation of temperature distribution and melt pool geometry during pulsed laser welding of Ti6Al4V alloy. Optics & Laser Technology, 59, 52-59. https://doi.org/10.1016/j.optlastec.2013.12.009

  • Amaya, J. S., Amaya-Vázquez, M. R., & Botana, F. J. (2013). Laser welding of light metal alloys: Aluminium and titanium alloys. In Handbook of Laser Welding Technologies (pp. 215-254). Woodhead Publishing. https://doi.org/10.1533/9780857098771.2.215

  • ANSYS. (2013). ANSYS fluent theory guide. ANSYS Inc.

  • ANSYS. (2016). ANSYS® academic research, release 16.0, ANSYS Fluent in ANSYS Workbench User’s Guide. ANSYS Inc.

  • Boccarusso, L., Arleo, G., Astarita, A., Bernardo, F., de Fazio, P., Durante, M., Giudice, G., Minutolo, F. M. C., Sepe, R., & Squillace, A. (2015). Effect of the process parameters on the geometrical defects of Ti-6Al-4V hot rolled sheets laser beam welded. In Key Engineering Materials (Vol. 651, pp. 901-906). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/KEM.651-653.901

  • Brent, A. D., Voller, V. R., & Reid, K. T. J. (1988). Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numerical Heat Transfer, Part A Applications, 13(3), 297-318. https://doi.org/10.1080/10407788808913615.

  • Cai, X., Sun, D., Li, H., Guo, H., Gu, X., & Zhao, Z. (2017). Microstructure characteristics and mechanical properties of laser-welded joint of γ-TiAl alloy with pure Ti filler metal. Optics & Laser Technology, 97, 242-247. https://doi.org/10.1016/j.optlastec.2017.07.011.

  • Caiazzo, F., Alfieri, V., Corrado, G., Argenio, P., Barbieri, G., Acerra, F., & Innaro, V. (2017a). Laser beam welding of a Ti–6Al–4V support flange for buy-to-fly reduction. Metals, 7(5), Article 183. https://doi.org/10.3390/met7050183

  • Caiazzo, F., Alfieri, V., Astarita, A., Squillace, A., & Barbieri, G. (2016b). Investigation on laser welding of Ti-6Al-4V plates in corner joint. Advances in Mechanical Engineering, 9(1). https://doi.org/10.1177/1687814016685546

  • Casalino, G., Leo, P., Mortello, M., Perulli, P., & Varone, A. (2017). Effects of laser offset and hybrid welding on microstructure and IMC in Fe–Al dissimilar welding. Metals, 7(8), Article 282. https://doi.org/10.3390/met7080282.

  • Chmelíčková, H., Hiklová, H., Václavek, L., Tomáštík, J., & Čtvrtlík, R. (2020). Characterization of titanium laser welds. Acta Polytechnica CTU Proceedings, 27, 145-148. https://doi.org/10.14311/APP.2020.27.0145.

  • Cui, L., Chen, B., Qian, W., He, D., & Chen, L. (2017). Microstructures and mechanical properties of dissimilar Al/Steel butt joints produced by autogenous laser keyhole welding. Metals, 7(11), Article 492. https://doi.org/10.3390/met7110492.

  • D’Ostuni, S., Leo, P., & Casalino, G. (2017). FEM simulation of dissimilar aluminum titanium fiber laser welding using 2D and 3D Gaussian heatsources. Metals, 7(8), Article 307. https://doi.org/10.3390/met7080307.

  • Dal, M., & Peyre, P. (2017). Multiphysics simulation and experimental investigation of aluminum wettability on a titanium substrate for laser welding-brazing process. Metals, 7(6), Article 218. https://doi.org/10.3390/met7060218.

  • DebRoy, T., & David, S. A. (1995). Physical processes in fusion welding. Reviews of Modern Physics, 67(1), Article 85. https://doi.org/10.3390/met7110504.

  • Evin, E., & Tomáš, M. (2017). The influence of laser welding on the mechanical properties of dual phase and TRIP steels. Metals, 7(7), Article 239. https://doi.org/10.3390/met7070239

  • Górka, J., & Stano, S. (2018). Microstructure and properties of hybrid laser arc welded joints (laser beam-mag) in thermo-mechanical control processed S700MC steel. Metals, 8(2), Article 132. https://doi.org/10.3390/met8020132.

  • Hong, K. M., & Shin, Y. C. (2016). Analysis of microstructure and mechanical properties change in laser welding of Ti6Al4V with a multiphysics prediction model. Journal of Materials Processing Technology, 237, 420-429. https://doi.org/10.1016/j.jmatprotec.2016.06.034.

  • Jalali, A., & Najafi, A. F. (2010). Numerical modeling of the solidification phase change in a pipe and evaluation of the effect of boundary conditions. Journal of Thermal Science, 19(5), 419-424. https://doi.org/10.1007/s11630-010-0403-z.

  • Jiang, D., Alsagri, A. S., Akbari, M., Afrand, M., & Alrobaian, A. A. (2019). Numerical and experimental studies on the effect of varied beam diameter, average power and pulse energy in Nd: YAG laser welding of Ti6Al4V. Infrared Physics & Technology, 101, 180-188. https://doi.org/10.1016/j.infrared.2019.06.006.

  • Junaid, M., Khan, F. N., Rahman, K., & Baig, M. N. (2017). Effect of laser welding process on the microstructure, mechanical properties and residual stresses in Ti-5Al-2.5 Sn alloy. Optics & Laser Technology, 97, 405-419. https://doi.org/10.1016/j.optlastec.2017.07.010.

  • Kashaev, N., Ventzke, V., Fomichev, V., Fomin, F., & Riekehr, S. (2016). Effect of Nd: YAG laser beam welding on weld morphology and mechanical properties of Ti–6Al–4V butt joints and T-joints. Optics and Lasers in Engineering, 86, 172-180. https://doi.org/10.1016/j.optlaseng.2016.06.004.

  • Kumar, C., Das, M., Paul, C. P., & Singh, B. (2017). Experimental investigation and metallographic characterization of fiber laser beam welding of Ti-6Al-4V alloy using response surface method. Optics and Lasers in Engineering, 95, 52-68. https://doi.org/10.1016/j.optlaseng.2017.03.013.

  • Liu, J., Gao, X. L., Zhang, L. J., & Zhang, J. X. (2014). A study of fatigue damage evolution on pulsed Nd: YAG Ti6Al4V laser welded joints. Engineering Fracture Mechanics, 117, 84-93. https://doi.org/10.1016/j.engfracmech.2014.01.005.

  • Lu, G. F., Zhang, L. J., Pei, Y., Ning, J., & Zhang, J. X. (2018). Study on the size effects of H-Shaped fusion zone of fiber laser welded AZ31 joint. Metals, 8(4), Article 198. https://doi.org/10.3390/met8040198.

  • Mashinini, P. M., & Hattingh, D. G. (2018). Influence of Laser Power and Traverse Speed on Weld Characteristics of Laser Beam Welded Ti-6Al-4V Sheet. Mechanical Stress Evaluation by Neutron and Synchrotron Radiation: MECA SENS 2017, 4(2018), 59-64. http://dx.doi.org/10.21741/9781945291678-9

  • Mohammed, G. R., Ishak, M., Ahmad, S. N. A. S., & Abdulhadi, H. A. (2017). Fiber laser welding of dissimilar 2205/304 stainless steel plates. Metals, 7(12), Article 546. https://doi.org/10.3390/met7120546.

  • Popescu, A. C., Delval, C., & Leparoux, M. (2017). Control of porosity and spatter in laser welding of thick AlMg5 parts using high-speed imaging and optical microscopy. Metals, 7(11), Article 452. https://doi.org/10.3390/met7110452.

  • Rai, R. (2008). Modeling of heat transfer and fluid flow in keyhole mode welding (Doctoral dissertation). The Pennsylvania State University, USA.

  • Rajulu, C. G., Krishna, A. G., & Rao, T. B. (2018). An integrated evolutionary approach for simultaneous optimization of laser weld bead characteristics. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 232(8), 1407-1422. https://journals.sagepub.com/doi/10.1177/0954405416667431.

  • Ruan, X., Zhou, Q., Shu, L., Hu, J., & Cao, L. (2018). Accurate prediction of the weld bead characteristic in laser keyhole welding based on the stochastic kriging model. Metals, 8(7), Article 486. https://doi.org/10.3390/met8070486.

  • Sánchez-Amaya, J. M., Pasang, T., Amaya-Vazquez, M. R., Lopez-Castro, J. D. D., Churiaque, C., Tao, Y., & Pedemonte, F. J. B. (2017). Microstructure and mechanical properties of Ti5553 butt welds performed by LBW under conduction regime. Metals, 7(7), Article 269. https://doi.org/10.3390/met7070269.

  • Satyanarayana, G. (2020). Thermal and fluid flow simulations in conduction mode laser beam welding of zirconium alloys (Doctoral dissertation). Koneru Lakshmaiah Education Foundation, India.

  • Satyanarayana, G., Narayana, K. L., & Rao, B. N. (2018). Numerical simulations on the laser spot welding of zirconium alloy endplate for nuclear fuel bundle assembly. Lasers in Manufacturing and Materials Processing, 5(1), 53-70. https://doi.org/10.1007/s40516-018-0061-7

  • Satyanarayana, G., Narayana, K. L., Rao, B. N., Slobodyan, M. S., Elkin, M. A., & Kiselev, A. S. (2019a). Numerical simulation of the processes of formation of a welded joint with a pulsed ND: YAG laser welding of ZR–1% NB alloy. Thermal Engineering, 66(3), 210-218. https://doi.org/10.1134/S0040601519030066

  • Satyanarayana, G., Narayana, K. L., & Rao, B. N. (2019b). Numerical investigation of temperature distribution and melt pool geometry in laser beam welding of a Zr–1% Nb alloy nuclear fuel rod end cap. Bulletin of Materials Science, 42(4), Article 170. https://doi.org/10.1007/s12034-019-1873-6

  • Voller, V. R., & Prakash, C. (1987). A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. International Journal of Heat and Mass Transfer, 30(8), 1709-1719. https://doi.org/10.1016/0017-9310(87)90317-6.

  • Wu, J., Zhang, H., Feng, Y., & Luo, B. (2018). 3D multiphysical modelling of fluid dynamics and mass transfer in laser welding of dissimilar materials. Metals, 8(6), Article 443. https://doi.org/10.3390/met8060443.

  • Xue, X., Pereira, A. B., Amorim, J., & Liao, J. (2017). Effects of pulsed Nd: YAG laser welding parameters on penetration and microstructure characterization of a DP1000 steel butt joint. Metals, 7(8), Article 292. https://doi.org/10.3390/met7080292.

  • Zeng, Z., Oliveira, J. P., Bu, X., Yang, M., Li, R., & Wang, Z. (2017). Laser welding of BTi-6431S high temperature titanium alloy. Metals, 7(11), Article 504. https://doi.org/10.3390/met7110504

  • Zhang, X., Li, L., Chen, Y., Yang, Z., & Zhu, X. (2017). Experimental investigation on electric current-aided laser stake welding of aluminum alloy T-joints. Metals, 7(11), Article 467. https://doi.org/10.3390/met7110467.

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-2457-2021

Download Full Article PDF

Share this article

Recent Articles