PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Pre-Press / JST-4817-2023

 

Inoculations of R. erythropolis and B. subtilis Stimulate Indigenous Bacteria and Improve the Properties of Low-fertilized Agricultural Soils

Abd Aziz Amin, Hideki Okuda, Mizuho Kawamura, Nurjannah and Andi Kurniawan

Pertanika Journal of Science & Technology, Pre-Press

DOI: https://doi.org/10.47836/pjst.32.5.11

Keywords: B. subtilis, microbial ecology, R. erythropolis, soil fertility, soil inoculation

Published: 2024-08-15

Biodiversity and the number of bacteria present in the soil are two of the main parameters of soil quality, especially for agricultural purposes. Analysis of the low-fertilized soils suggested that the number and diversity of the bacterial communities in this soil are low. Hence, various methods have been used to stimulate bacterial activity and improve agricultural soil conditions. One of the popular methods is the inoculation of bacteria such as B. subtilis and R. erythropolis. These bacteria are potential species as bio-inoculants in soil management. However, the effectiveness of these bacteria in stimulating the activity of bacterial communities and improving soil properties of the low-fertilized soil is still sparsely explored. Therefore, this study aimed to analyze the impact of the inoculation of B. subtilis and R. erythropolis on the bacterial community structure and soil properties of low-fertilized soil. The soil used is agricultural soil for tobacco farming activities using agrochemicals. Bacterial community structures were analyzed using the environmental DNA (eDNA) method. The soil properties analyzed were total nitrogen, carbon, phosphorous, potassium, and pH. This study suggests that B. subtilis and R. erythropolis may affect the bacterial community structure and increase the number of bacteria to reach the ideal limit for fertile soil. Adding bacterial inoculants could stimulate the growth of bacteria and the nutrient cycle in the soil environment, resulting in improved soil fertility.

  • Adhikari, D., Kai, T., Mukai, M., Kiwako, S. A., & Kubo, M. (2014). Proposal for a new soil fertility index (SOFIX) for organic agriculture and construction of a SOFIX database for agricultural fields. Current Topics in Biotechnology, 8, 81-91.

  • Aktar, M. W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: Their benefits and hazards. Interdisciplinary Toxicology, 2(1), 1-12. https://doi.org/10.2478/v10102-009-0001-7

  • Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: The 2012 revision. Food and Agriculture Organization of the United Nations. https://doi.org/10.22004/ag.econ.288998

  • Amini, S., & Asoodar, M. (2015). The effect of conservation tillage on crop yield production (The Review). New York Science Journal, 8(3), 25–29. https://doi.org/ 10.7537/marsnys080315.04

  • Angelina, E. M., Papatheodorou, T., Demirtzoglou, N., & Monokrousos. (2020). Effects of Bacillus subtilis and Pseudomonas fluorescens inoculation on attributes of the lettuce (Lactuca sativa L) soil rhizosphere microbial community: The role of the management system. Agronomy, 10(9), Article 1428. https://doi.org/10.3390/agronomy10091428

  • Aoshima, H., Kimura, A., Shibutani, A., Okada, C., Matsumiya, Y., & Kubo, M. (2006). Evaluation of soil bacterial number using environmental DNA extracted by slow-stirring method. Applied Microbiology and Biotechnology, 71, 875-880. https://doi.org/10.1007/s00253-005-0245-x

  • Babalola, O. O., & Glick, B. R. (2012). The use of microbial inoculants in African agriculture: Current practice and future prospects. Journal of Food, Agriculture & Environment, 10(3&4), 540-549.

  • Bargaz, A., Lyamlouli, K., Chtouki, M., Zeroual, Y., & Dhiba, D. (2018). Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Frontiers Microbiology, 9, Article 1606. https://doi.org/10.3389/fmicb.2018.01606

  • Bollag, J. M. (2008). Interactions of soil components and microorganisms and their effects on soil remediation. Revista de la ciencia del suelo y nutrición vegetal, 8(ESPECIAL), 28-32. https://doi.org/10.4067/s0718-27912008000400006

  • Campbell, L. C. (2008). Managing soil fertility decline. Journal of Crop Production, 1(2), 29-52. https://doi.org/10.1300/J144v01n02_02

  • Carvalho, C. C. C. R. D. (2019). Adaptation of rhodococcus to organic solvents. In H. M. Alvarez (Ed.), Biology of Rhodococcus (pp. 103-135). Springer. https://doi.org/10.1007/978-3-030-11461-9_5

  • Choi, Y., Han, S. W., Kim, J. S., Jang, Y., & Shin, J. S. (2021). Biochemical characterization and synthetic application of aromatic L-amino acid decarboxylase from Bacillus atrophaeus. Applied Microbiolology Biotechnology, 105, 2775–2785. https://doi.org/10.1007/s00253-021-11122-3

  • Dhanker, R., Goyal, S., Kumar, K., & Hussain, T. (2021). Bacterial community response to pesticides polluted soil. In S. D. Mandal & A. K. Passari (Eds.), Recent Advancement in Microbial Biotechnology (pp. 339-355). Academic Press. https://doi.org/10.1016/B978-0-12-822098-6.00010-0.

  • Feirer, N., Lauber, C. L., & Ramirez, K. S. (2012). Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. The ISME Journal, 6(5), 1007-1017. https://doi.org/10.1038/ismej.2011.159

  • François, P. T., Hans, L., Esther, E. E., Etienne, L., Sven, M., & Ellen, K. (2021). Soil microbial communities are driven by the declining availability of cations and phosphorus during ecosystem retrogression. Soil Biology and Biochemistry, 163, Article 108430. https://doi.org/10.1016/j.soilbio.2021.108430.

  • Han, X., Li, Y., Li, Y., Du, X., Li, B., Li, Q., & Bezemer, T. M. (2022). Soil inoculum identity and rate jointly steer microbiomes and plant communities in the field. ISME Communications, 2(1), Article 59. https://doi.org/10.1038/s43705-022-00144-1

  • Hawrot, P. M., Mikiciuk, G., Mikiciuk, M., Izwilow, M., & Kiniorska, J. (2016). Number and activity of microorganisms in soil Inoculated with the Rhizocell C biopreparation in strawberry cultivation (Fragaria × Ananasa Duch). Journal Ecological Engineering, 17(2), 135-140. https://doi.org/10.12911/22998993/62307

  • Hermans, S. M., Lear, G., Case, B. S., & Buckley, H. L (2023). The soil microbiome: An essential, but neglected, component of regenerative agroecosystems. iScience, 26(2), Article 106028. https://doi.org/10.1016/j.isci.2023.106028.

  • Jacoby, R., Peukert, M., & Succurro, A. (2017). The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Frontiers in Plant Science, 8, Article 1617. https://doi.org/10.3389/fpls.2017.01617

  • Jacquet, F., Jeuffroy, M. H., Jouan, J., Cadre, E., Litrico I., Malausa T., Reboud X., & Huyghe, C. (2022). Pesticide-free agriculture as a new paradigm for research. Agronomy for Sustainable Development, 42(1), Article 8. https://doi.org/10.1007/s13593-021-00742-8

  • Kamou, N. N., Karasali, H., Menexes, G., Kasiotis, K. M., Bon, M. C., Papadakis, E. N., Tzelepis, G. D., Lotos, L., & Lagopodi, A. L. (2015). Isolation screening and characterisation of local beneficial rhizobacteria based upon their ability to suppress the growth of Fusarium oxysporum f. sp. radicis-lycopersici and tomato foot and root rot. Biocontrol Science and Technology, 25(8), 928–949. https://doi.org/10.1080/09583157.2015.1020762

  • Kim, H., Park, Y. H., Yang, J. E., Kim, H. S., Kim, S. C., Oh, E. J., Moon, J., Cho, W., Shin, W., & Yu, C. (2022). Analysis of major bacteria and diversity of surface soil to discover biomarkers related to soil health. Toxics, 10(3), Article 117. https://doi.org/10.3390/toxics10030117

  • Kumar, S., Diksha, Sindhu, S. S., & Kumar R. (2022). Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Current Research in Microbial Sciences, 3, Article 100094. https://doi.org/10.1016/j.crmicr.2021.100094

  • Li, X., Su, Y., Ahmed, T., Ren, H., Javed Y., Yao, Q. A. J., & Yan, B. Li. (2021). Effects of different organic fertilizers on improving soil from newly reclaimed land to crop soil. Agriculture, 11(6), Article 560. https://doi.org/10.3390/agriculture11060560

  • Liu, W., Wang, Q., Wang, B., Hou, J., Luo, Y., Tang, C., & Ashley, F. E. (2015). Plant growth-promoting rhizobacteria enhance the growth and Cd uptake of Sedum plumbizincicola in a Cd-contaminated soil. Journal of Soils and Sediments, 15(5), 1191-1199. https://doi.org/10.1007/s11368-015-1067-9

  • Maximillian, J., Brusseau, M. L., Glenn, E. P.,& Matthias, A. D. (2019). Chapter 25 - Pollution and environmental perturbations in the global system. In M. L. Brusseau, I. L. Pepper & C. P. Gerba (Eds.), Environmental and Pollution Science (3rd ed.; pp. 457-476). Academic Press. https://doi.org/10.1016/B978-0-12-814719-1.00025-2

  • Meena, R. S., Kumar, S., & Datta, R. (2020). Impact of agrochemicals on soil microbiota and management: A review. Land, 9(2), Article 34. https://doi.org/10.1007/978-981-16-9310-6_3

  • Nayak, S. K., Dash, B., Baliyarsingh, B. (2018). Microbial remediation of persistent agro-chemicals by soil bacteria: An overview. In J. K. Patra, G. Das & H. S. Shin (Eds.), Microbial Biotechnology (pp. 275-301). Springer. https://doi.org/10.1007/978-981-10-7140-9_13

  • Ota, H. (2013). Historical development of pesticides in Japan. Japanese Journal of Pesticide Science, 38(2), 161-166. https://doi.org/10.1584/jpestics.w13-02

  • Popp, J., Pető, K., & Nagy J. (2013). Pesticide productivity and food security. A review. Agronomy for Sustainable Development, 33, 243–255. https://doi.org/10.1007/s13593-012-0105-x

  • Prashar, P.,& Shah, S. (2016). Impact of fertilizers and pesticides on soil microflora in agriculture. In E. Lichtfouse (Ed.), Sustainable Agriculture Reviews (pp. 331-361). Springer. https://doi.org/10.1007/978-3-319-26777-7_8

  • Qi, Y., Zhu, J., Fu, Q., Hu, H., Huang, Q., & Violante, A. (2016). Sorption of Cu by organic matter from the decomposition of rice straw. Journal of Soils and Sediments, 16, 2203–2210. https://doi.org/10.1007/s11368-016-1413-6

  • Ramadass, M., & Thiagarajan, P. (2017). Effective pesticide nano formulations and their bacterial degradation. IOP Conference Series: Materials Science and Engineering, 263, Article 022050. https://doi.org/10.1088/1757-899X/263/2/022050

  • Santos, M. S., Nogueira, M. A., & Hungria M. (2019). Microbial inoculants: Reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Expr, 9(1), Article 205. https://doi.org/10.1186/s13568-019-0932-0

  • Trabelsi, D., & Mhamdi R. (2013). Microbial inoculants and their impact on soil microbial communities: A review. BioMed Research International, 2013(1), Article 863240. https://doi.org/10.1155/2013/863240

  • Vendan, R. T., Lee, S. H., Yu, Y. J., & Rhee, Y. H. (2012). Analysis of bacterial community in the ginseng soil using Denaturing Gradient Gel Electrophoresis (DGGE). Indian Journal of Microbiology, 52(2), 286–288. https://doi.org/10.1007/s12088-011-0193-3

  • Wen, T., Ding, Z., Thomashow, L. S., Hale, L., Yang, S., Xie, P., Liu, X., Wang, H., Shen, Q., & Yuan, J. (2023). Deciphering the mechanism of fungal pathogen-induced disease-suppressive soil. New Phytologist, 238(6), 2634-2650. https://doi.org/10.1111/nph.18886

  • Wolińska, A., Kuźniar, A., Szafranek-Nakonieczna, A., Jastrzębska, N., Roguska, E., & Stępniewska, Z. (2016). Biological activity of autochthonic bacterial community in oil-contaminated soil. Journal Water Air Soil Pollution, 227, Article 130. https://doi.org/10.1007/s11270-016-2825-z

  • Xin-ling, M., Jia, L., Xiao-fen, C., Wei-tao, L., Chun-yu, J., Meng, W., Ming, L., & Zhong-pe, L. (2021). Bacterial diversity and community composition changes in paddy soils that have different parent materials and fertility levels. Journal of Integrative Agriculture, 20(10), 2797-2806. https://doi.org/10.1016/s2095-3119(20)63364-0

  • Yadav, S. L., Birla, D., Inwati, D. K., Yadav, M., Yadav, I. R., Makwana, S. N., & Lakshman, P. N. (2023). Impact of agrochemicals on soil biota and ways to mitigate it: A review. International Journal of Environment and Climate Change, 13(5), 366–375. https://doi.org/10.9734/ijecc/2023/v13i51779

  • Zhang, C., Liu, G., Xue, S., & Wang G. (2016). Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau. Soil Biology and Biochemistry, 97, 40-49. https://doi.org/10.1016/j.soilbio.2016.02.013

ISSN 0128-7702

e-ISSN 2231-8534

Article ID

JST-4817-2023

Download Full Article PDF

Share this article

Related Articles