PERTANIKA JOURNAL OF SOCIAL SCIENCES AND HUMANITIES

 

e-ISSN 2231-8534
ISSN 0128-7702

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Social Science and Humanities, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Abubakar, H., & Sabri, S. R. M. (2021a). Incorporating simulated annealing algorithm in the Weibull distribution for valuation of investment return of Malaysian property development sector. International Journal for Simulation and Multidisciplinary Design Optimization, 12, Article 22. https://doi.org/10.1051-/smdo/2021023

  • Abubakar, H., & Sabri, S. R. M. (2021b). Simulation study on modified weibull distribution for modelling of investment return. Pertanika Journal of Science and Technology, 29(4), 2767-2790. https://doi.org/10.47836/pjst.29.4.29

  • Ahmad, A. G. (2015). Comparative study of bisection and Newton-Rhapson methods of root-finding problems. International Journal of Mathematics Trends and Technology, 19(2), 121-129. https://doi.org/10.14445/22315373/ijmtt-v19p516

  • Baldwin, R. H. (1959). How to assess investment proposals. Harvard Business Review, 37(3), 98-104.

  • Besley, S., & Brigham, E. F. (2015). CFIN4 (with Finance CourseMate). Cengage Learning.

  • Bílková, D. (2012). Lognormal distribution and using L-moment method for estimating its parameters. International Journal of Mathematical Models and Methods in Applied Sciences, 6(1), 30-44.

  • Biondi, Y. (2006). The double emergence of the modified internal rate of return: The neglected financial work of Duvillard (1755 - 1832) in a comparative perspective. The European Journal of the History of Economic Thought, 13(3), 311-335. https://doi.org/10.1080/09672560600875281

  • Bonazzi, G., & Iotti, M. (2016). Evaluation of investment in renovation to increase the quality of buildings: A specific Discounted Cash Flow (DCF) approach of appraisal. Sustainability, 8(3), Article 268. https://doi.org/10.3390/su8030268

  • Brealey, R. A., Myers, S. C., & Allen, F. (2006). Principles of Corporate Finance. IrwinMcGrawHill.

  • Černý, V. (1985). Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. Journal of Optimization Theory and Applications, 45(1), 41-51.

  • Chang, T. P. (2011). Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application. Applied Energy, 88(1), 272-282.

  • Chaurasiya, P. K., Ahmed, S., & Warudkar, V. (2018). Study of different parameters estimation methods of Weibull distribution to determine wind power density using ground based Doppler SODAR instrument. Alexandria Engineering Journal, 57(4), 2299-2311. https://doi.org/10.1016/j.aej.2017.08.008

  • Cont, R. (2001). Empirical properties of asset returns: Stylised facts and statistical issues. Quantitative Finance, 1(2), 223-236. https://doi.org/10.1080/713-665670

  • Crama, Y., & Schyns, M. (2003). Simulated annealing for complex portfolio selection problems. European Journal of Operational Research, 150(3), 546-571. https://doi.org/10.1016/S0377-2217(02)00784-1

  • Du, K. L., & Swamy, M. N. S. (2016). Simulated annealing. In Search and Optimisation by Metaheuristics (pp. 29-36). Birkhauser. https://doi.org/10.1007/978-3-319-41192-7_2

  • Eric, U., Olusola, O. M. O., & Eze, F. C. (2021). A study of properties and applications of gamma distribution. African Journal of Mathematics and Statistics Studies, 4(2), 52-65. https://doi.org/10.52589/ajmss-mr0dq1dg

  • Fama, E. F. (1963). Mandelbrot and the stable Paretian hypothesis. The Journal of Business, 36(4), 420-429. https://doi.org/10.1086/294633

  • Franzin, A., & Stützle, T. (2019). Revisiting simulated annealing: A component-based analysis. Computers and Operations Research, 104, 191-206. https://doi.org/10.1016/j.cor.2018.12.015

  • Gomes, O., Combes, C., & Dussauchoy, A. (2008). Parameter estimation of the generalized gamma distribution. Mathematics and Computers in Simulation, 79 (4), 955-963. https://doi.org/10.1016/j.matcom.2008.02.006

  • Greenstein, L. J., Michelson, D. G., & Erceg, V. (1999). Moment-method estimation of the Ricean K-factor. IEEE Communications Letters, 3(6), 175-176. https://doi.org/10.1109/4234.769521

  • Honore, B., Jørgensen, T., & de Paula, A. (2020). The informativeness of estimation moments. Journal of Applied Econometrics, 35(7), 797-813. https://doi.org/10.1002/jae.2779

  • Hosking, J. R. M., Wallis, J. R., & Wood, E. F. (1985). Estimation of the generalized extreme-value distribution by the method of probability-weighted moments. Technometrics, 27(3), 251-261.

  • Idris, A. A., & Muhammad, S. S. R (2022). A simulation study on the simulated annealing algorithm in estimating the parameters of generalized gamma distribution. Science and Technology Indonesia, 7(1), 84-90. https://doi.org/10.26554/sti.2022.7.1.84-90

  • Kellison, S. G. (2009). The Theory of Interest. McGraw Hill Education.

  • Khodabina, M., & Ahmadabadi, A. (2010). Some properties of generalized gamma distribution. Mathematical Sciences, 4(1), 9-28.

  • Kiche, J., Ngesa, O., & Orwa, G. (2019). On generalized gamma distribution and its application to survival data. International Journal of Statistics and Probability, 8(5), 1927-7040. https://doi.org/10.5539/ijsp.v8n5p85

  • Kierulff, H. (2008). MIRR: A better measure. Business Horizons, 51(4), 321-329. https://doi.org/10.1016/j.bushor.2008.02.005

  • Kim, S., Lee, J. Y., & Sung, D. K., (2003). A shifted gamma distribution model for long-range dependent internet traffic. IEEE Communications Letters, 7(3), 124-126. https://doi.org/10.1109/lcomm.2002.808400

  • Kirkpatrick, S., Gelatt Jr, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671-680. https://doi.org/10.1126/science.220.4598.67

  • Lakshmi, R. V., & Vaidyanathan, V. S. (2016). Three-parameter gamma distribution: Estimation using likelihood, spacings and least squares approach. Journal of Statistics and Management Systems, 19(1), 37-53. https://doi.org/10.1080/09720510.2014.986927

  • Malá, I., Sládek, V., & Habarta, F. (2022). Comparison of estimates using L and TL moments and other robust characteristics of distributional shape and tail heaviness. REVSTAT-Statistical Journal, 20(5), 529-546. https://doi.org/10.57805/revstat.v20i5.386

  • Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-91. https://doi.org/10.1111/j.1540-6261.1952.tb01525.x

  • Munkhammar, J., Mattsson, L., & Rydén, J. (2017). Polynomial probability distribution estimation using the method of moments. PloS One, 12(4), Article e0174573. https://doi.org/10.1371/journal.pone.0174573

  • Naji, L. F., & Rasheed, H. A. (2019). Estimate the two parameters of gamma distribution under entropy loss function. Iraqi Journal of Science, 60(1), 127-134. https://doi.org/10.24996/ijs.2019.60.1.14

  • Orús, R., Mugel, S., & Lizaso, E. (2019). Quantum computing for finance: Overview and prospects. Reviews in Physics, 4, Article 100028. https://doi.org/10.1016-/j.revip.-2019.100028

  • Osborne, M. J. (2010). A resolution to the NPV–IRR debate? The Quarterly Review of Economics and Finance, 50(2), 234-239. https://doi.org/10.1016/j.-qref.2010.01.002

  • Özsoy, V. S., Ünsal, M. G., & Örkcü, H. H. (2020). Use of the heuristic optimization in the parameter estimation of generalized gamma distribution: Comparison of GA, DE, PSO and SA methods. Computational Statistics, 35(4), 1895-1925. https://doi.org/10.1007/s00180-020 00966-4

  • Pascual, N., Sison, A. M., Gerardo, B. D., & Medina, R. (2018). Calculating internal rate of return (IRR) in practice using improved newton-raphson algorithm. Philippine Computing Journal, 13(2), 17-21. https://pcj.csp.org.ph/index.php-/pcj/issue/view/28

  • Quiry, P., Dallocchio, M., LeFur, Y., & Salvi, A. (2005). Corporate Finance: Theory and Practice (6th Ed). John Wiley & Sons Ltd.

  • Rocha, P. A. C., de Sousa, R. C., de Andrade, C. F., & da Silva, M. E. V. (2012). Comparison of seven numerical methods for determining Weibull parameters for wind energy generation in the northeast region of Brazil. Applied Energy, 89(1), 395-400. https://doi.org/10.1016/j.apenergy.2011.08.003

  • Ross, A. S., Westerfield, R. W., & Jordan, B. D. (2010). Fundamentals of Corporate Finance. The McGraw-Hill Companies, Inc.

  • Sabri, S. R. M., & Sarsour, W. M. (2019). Modelling on stock investment valuation for long-term strategy. Journal of Investment and Management, 8(3), 60-66. https://doi.org/10.11648/j.jim.20190803.11

  • Satyasai, K. J. S. (2009). Application of modified internal rate of return method for watershed evaluation. Agricultural Economics Research Review, 22, 401-406.

  • Sayed, A. I. A., & Sabri, S. R. M. (2022). Transformed modified internal rate of return on gamma distribution for long term stock investment. Journal of Management Information and Decision Sciences, 25(S2), 1-17

  • Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The Journal of Finance, 19(3), 425-442. https://doi.org/10.1111/j.1540-6261.1964.tb02865.x

  • Stacy, E. W., & Mihram, G. A. (1965). Parameter estimation for a generalized gamma distribution. Technometrics, 7(3), 349-358. https://doi.org/10.1080/00401706.1965.10268

  • Tizgui, I., El Guezar, F., Bouzahir, H., & Benaid, B. (2017). Comparison of methods in estimating Weibull parameters for wind energy applications. International Journal of Energy Sector Management, 11(4), 650-663. https://doi.org/10.1108/IJESM-06-2017-0002

ISSN 0128-7702

e-ISSN 2231-8534

Article ID

J

Download Full Article PDF

Share this article

Recent Articles