Home / Regular Issue / JSSH Vol. 29 (3) Jul. 2021 / JST-2376-2020


Spatial Distribution of Picophytoplankton in Southeastern Coast of Peninsular Malaysia Using Flow Cytometry

Roswati Md Amin, Md Suffian Idris, Nurul Asmera Mudiman, Noor Hazwani Mohd Azmi and Hing Lee Siang

Pertanika Journal of Social Science and Humanities, Volume 29, Issue 3, July 2021

DOI: https://doi.org/10.47836/pjst.29.3.18

Keywords: Picoeukaryotes, picophytoplankton, Prochlorococcus, South China Sea, Synechococcus

Published on: 31 July 2021

The distribution of picocyanobacteria from two genera, Synechococcus and Prochlorococcus, and picoeukaryotes in surface water (0.5 m) was investigated by flow cytometry in the southeastern coast of Peninsular Malaysia during the Southwest monsoon in August 2014. During the cruise, Synechococcus cells were predominant throughout the study area, contributing as much as 50% to the total picophytoplankton population, whereas picoeukaryotes and Prochlorococcus constituted only 31% and 19% of the population, respectively. Spatially, Synechococcus and picoeukaryotes were more dominant in coastal waters, while Prochlorococcus appeared to be more highly abundant in offshore waters. Furthermore, the percentage contribution of each population to total picophytoplankton also exhibited different spatial distribution patterns along a coastal-offshore gradient. The percentage contribution of Synechococcus was spatially constant throughout the study area, while the fraction contributed by picoeukaryotes showed a reduced contribution from coastal to offshore waters. In contrast, Prochlorococcus exhibited an increased proportion to total picophytoplankton across a coastal-offshore gradient, suggesting the increasing importance of this population in offshore waters of the study area. As revealed by Canonical Correlation Analysis, the abundance of Synechococcus and picoeukaryotes increased significantly with reducing dissolved oxygen levels and pH, and with increasing total chlorophyll. In contrast, temperature was the only factor influencing the abundance of Prochlorococcus significantly increased with decreasing water temperature in the study area. Overall, results of the present study provide valuable information on the role of regional environmental factors in the distribution and dominance of picophytoplankton communities that are not only critical for the ocean productivity but also the impact on the carbon cycle in the study area.

  • Agawin, N. S. R., Duarte, C. M., & Agusti, S. (2000a). Response of Mediterranean Synechococcus growth and loss rates to experimental nutrient inputs. Marine Ecology Progress Series, 206, 97-106. https://doi.org/10.3354/meps206097

  • Agawin, N. S. R., Duarte, C. M., & Agustí, S. (2000b). Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnology and Oceanography, 45(3), 591-600. https://doi.org/10.4319/lo.2000.45.3.0591

  • Agawin, N. S. R., Duarte, C. M., Agustí, S., & McManus, L. (2003). Abundance, biomass and growth rates of Synechococcus sp. in a tropical coastal ecosystem (Philippines, South China Sea). Estuarine, Coastal and Shelf Science, 56, 49-502. https://doi.org/10.1016/S0272-7714(02)00200-7

  • Agusti, S., Lubián, L. M., Moreno-Ostos, E., Estrada, M., & Duarte, C. M. (2019). Projected changes in photosynthetic picoplankton in a warmer subtropical ocean. Frontiers in Marine Science, 5, Article 506. https://doi.org/10.3389/fmars.2018.00506

  • Akhir, M., Zakaria, N., & Tangang, F. (2014). Intermonsoon variation of physical characteristics and current circulation along the east coast of Peninsular Malaysia. International Journal of Oceans and Oceanography, 2014, Article 527587. https://doi.org/10.1155/2014/527587.

  • Biller, S. J., Berube, P. M., Lindell, D., & Chisholm, S. W. (2015). Prochlorococcus: The structure and function of collective diversity. Nature Reviews Microbiology, 13(1), 13-27. https://doi.org/10.1038/nrmicro3378

  • Brussaard, C. P., Riegman, R., Noordeloos, A. A., Cadee, G. C., Witte, H., Kop, A. J., Nieuwland, G., Van Duyl, F. C., & Bak, R. P. (1995). Effects of grazing, sedimentation and phytoplankton cell lysis on the structure of a coastal pelagic food web. Marine Ecology Progress Series, 123(1), 259-271. https://doi.org/10.3354/meps123259

  • Buitenhuis, E. T., Li, W. K. W., Vaulot, D., Lomas, M. W., Landry, M. R., Partensky, F., Karl, D. M., Ulloa, O., Campbell, L., Jacquet, S., Lantoine, F., Chavez, F., MacIas, D., Gosselin, M., & McManus, G. B. (2012). Picophytoplankton biomass distribution in the global ocean. Earth System Science Data, 4, 37-46. https://doi.org/10.5194/essd-4-37-2012

  • Calbet, A., Trepat, I., Almeda, R., Saló, V., Saiz, E., Movilla, J. I., Alcaraz, M., Yebra, L., & Simó, R. (2008). Impact of micro- And nanograzers on phytoplankton assessed by standard and size-fractionated dilution grazing experiments. Aquatic Microbial Ecology, 50, 145-156. https://doi.org/10.3354/ame01171

  • Campbell, L., Nolla, H. A., & Vaulot, D. (1994). The importance of Prochlorococcus to community structure in the central North Pacific Ocean. Limnology and Oceanography, 39(4), 954-961. https://doi.org/10.4319/lo.1994.39.4.0954.

  • Chen, B., Liu, H., Landry, M. R., Dai, M., Huang, B., & Sun, J. (2009). Close coupling between phytoplankton growth and microzooplankton grazing in the western South China Sea. Limnology and Oceanography, 54(4), 1084-1097. https://doi.org/10.4319/lo.2009.54.4.1084

  • Chisholm, S. W., Olson, R. J., Zettler, E. R., Goericke, R., Waterbury, J. B., & Welschmeyer, N. A. (1988). A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature, 334, 340-343. https://doi.org/10.1038/334340a0

  • Dolan, J. R., & Šimek, K. (1999). Diel periodicity in Synechococcus populations and grazing by heterotrophic nanoflagellates: Analysis of food vacuole contents. Limnology and Oceanography, 44, 1565-1570. https://doi.org/10.4319/lo.1999.44.6.1565

  • Echevarría, F., Zabala, L., Corzo, A., Navarro, G., Prieto, L., & Macías, D. (2009). Spatial distribution of autotrophic picoplankton in relation to physical forcings: The Gulf of Cádiz, Strait of Gibraltar and Alborán Sea case study. Journal of Plankton Research, 10(24), 9824-9829. https://doi.org/10.1093/plankt/fbp070

  • Evans, C., & Brussaard, C. P. D. (2012). Viral lysis and microzooplankton grazing of phytoplankton throughout the Southern Ocean. Limnology and Oceanography, 54, 1826-1837. https://doi.org/10.4319/lo.2012.57.6.1826

  • Flombaum, P., Gallegos, J. L., Gordillo, R. A., Rincón, J., Zabala, L. L., Jiao, N., Karl, D. M., Li, W. K. W., Lomas, M. W., Veneziano, D., Vera, C. S., Vrugt, J. A., & Martiny, A. C. (2013). Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proceedings of the National Academy of Sciences of the United States of America, 110(24), 9824-9829. https://doi.org/10.1073/pnas.1307701110

  • Gasol, J. M., Del Giorgio, P. A., & Duarte, C. M. (1997). Biomass distribution in marine planktonic communities. Limnology and Oceanography, 42(6), 1353-1363. https://doi.org/10.4319/lo.1997.42.6.1353

  • Gin, K. Y. H., Lin, X., & Zhang, S. (2000). Dynamics and size structure of phytoplankton in the coastal waters of Singapore. Journal of Plankton Research, 22(8), 1465-1484. https://doi.org/10.1093/plankt/22.8.1465

  • Gin, K. Y. H., Zhang, S., & Lee, Y. K. (2003). Phytoplankton community structure in Singapore’s coastal waters using HPLC pigment analysis and flow cytometry. Journal of Plankton Research, 25(12), 1507-1519. https://doi.org/10.1093/plankt/fbg112

  • Guiry, M. D., & Guiry, G. M. (2016). AlgaeBase. World-wide electronic publication. National University of Ireland. Retrieved November 15, 2020, from https://doi.org/http://www.algaebase.org/search/genus/detail/?genus_id=43474

  • Guo, C., Liu, H., Zheng, L., Song, S., Chen, B., & Huang, B. (2014). Seasonal and spatial patterns of picophytoplankton growth, grazing and distribution in the East China Sea. Biogeosciences, 11(7), 1847-1862. https://doi.org/10.5194/bg-11-1847-2014

  • Huisman, J., Sharples, J., Stroom, J. M., Visser, P. M., Kardinaal, W. E. A., Verspagen, J. M. H., & Sommeijer, B. (2004). Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology, 85(11), 2960-2970. https://doi.org/10.1890/03-0763

  • Jiang, Z. Y., & Sun, F. L. (2020). Diversity and biogeography of picoplankton communities from the Straits of Malacca to the South China Sea. Oceanological and Hydrobiological Studies, 49(1), 23-33. https://doi.org/10.1515/ohs-2020-0003

  • Jeffrey, S. W., & Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie Und Physiologie Der Pflanzen, 167, 191-194. https://doi.org/10.1016/s0015-3796(17)30778-3

  • Lee, C. W., Bong, C. W., Ng, C. C., & Alias, S. A. (2006). Factors affecting variability of heterotrophic and phototrophic microorganisms at high water in a mangrove forest at Cape Rachado, Malaysia. Malaysian Journal of Science, 25(2), 55-66.

  • Lee, C. W., Lim, J. H., & Heng, P. L. (2013). Investigating the spatial distribution of phototrophic picoplankton in a tropical estuary. Environmental Monitoring and Assessment, 185, 9697-9704. https://doi.org/10.1007/s10661-013-3283-3

  • Li, W. K. W. (1998). Annual average abundance of heterotrophic bacteria and Synechococcus in surface ocean waters. Limnology and Oceanography, 43(7), 1746-1753. https://doi.org/10.4319/lo.1998.43.7.1746.

  • Liu, G., & Chai, F. (2009). Seasonal and interannual variability of primary and export production in the South China Sea: A three‐dimensional physical‐biogeochemical model study. ICES Journal of Marine Science, 66(2), 420-431.

  • Liu, H., Jing, H., Wong, T. H. C., & Chen, B. (2014). Co-occurrence of phycocyanin- and phycoerythrin-rich Synechococcus in subtropical estuarine and coastal waters of Hong Kong. Environmental Microbiology Reports, 6(1), 90-99. https://doi.org/10.1111/1758-2229.12111

  • Liu, H., Nolla, H. A., & Campbell, L. (1997). Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aquatic Microbial Ecology, 12, 39-47. https://doi.org/10.3354/ame012039.

  • Liu, K. K., Chao, S. Y., Shaw, P. T., Gong, G. C., Chen, C. C., & Tang, T. Y. (2002). Monsoon-forced chlorophyll distribution and primary production in the South China Sea: Observations and a numerical study. Deep-Sea Research Part I: Oceanographic Research Paper, 49(8), 1387-1412.

  • Lønborg, C., & Søndergaard, M. (2009). Microbial availability and degradation of dissolved organic carbon and nitrogen in two coastal areas. Estuarine, Coastal and Shelf Science, 81(4), 513-520. https://doi.org/10.1016/j.ecss.2008.12.009

  • Marie, D., Simon, N., & Vaulot, D. (2005). Phytoplankton cell counting by flow cytometry. Algal Culturing Techniques, 1, 253-267. https://doi.org/10.1016/b978-012088426-1/50018-4

  • Mella-Flores, D., Six, C., Ratin, M., Partensky, F., Boutte, C., Le Corguillé, G., Marie, D., Blot, N., Gourvil, P., Kolowrat, C., & Garczarek, L. (2012). Prochlorococcus and Synechococcus have evolved different adaptive mechanisms to cope with light and uv stress. Frontiers in Microbiology, 3, Article 285. https://doi.org/10.3389/fmicb.2012.00285

  • Mena, C., Reglero, P., Hidalgo, M., Sintes, E., Santiago, R., Martín, M., Moyà, G., & Balbín, R. (2019). Phytoplankton community structure is driven by stratification in the oligotrophic Mediterranean Sea. Frontiers in Microbiology, 10, Article 1698. https://doi.org/10.3389/fmicb.2019.01698

  • Miyashita, H. (2015). Diversity of marine phototorophs. In S. K. Kim (Ed.), Springer handbook of marine biotechnology (pp. 27-34). Springer. https://doi.org/10.1007/978-3-642-53971-8

  • Moore, L. R., Goericke, R., & Chisholm, S. W. (1995). Comparative physiology of Synechococcus and Prochlorococcus: Influence of light and temperature on growth, pigments, fluorescence and absorptive properties. Marine Ecology Progress Series, 116(1), 259-275. https://doi.org/10.3354/meps116259

  • Mouriño-Carballido, B., Hojas, E., Cermeño, P., Chouciño, P., Fernández-Castro, B., Latasa, M., Marañón, E., Morán, X. A. G., & Vidal, M. (2016). Nutrient supply controls picoplankton community structure during three contrasting seasons in the northwestern Mediterranean Sea. Marine Ecology Progress Series, 543, 1-19. https://doi.org/10.3354/meps11558

  • Otero-Ferrer, J. L., Cermeño, P., Fernández-Castro, B., Gasol, J. M., Morán, X. A. G., Marañon, E., Moreira-Coello, V., Varela, M., Villamaña, M., & Mouriño-Carballido, B. (2018). Factors controlling the community structure of picoplankton in contrasting marine environments. Biogeosciences Discussions, 15, 6199-6220. https://doi.org/10.5194/bg-2018-211

  • O’Boyle, S., McDermott, G., Noklegaard, T., & Wilkes, R. (2013). A simple index of trophic status in estuaries and coastal bays based on measurements of pH and dissolved oxygen. Estuaries and Coasts, 36(1), 158-173. https://doi.org/10.1007/s12237-012-9553-4

  • Pan, L. A., Zhang, J., & Zhang, L. H. (2007). Picophytoplankton, nanophytoplankton, heterotrohpic bacteria and viruses in the Changjiang Estuary and adjacent coastal waters. Journal of Plankton Research, 29, 187-197. https://doi.org/10.1093/plankt/fbm006

  • Partensky, F., Blanchot, J., & Vaulot, D. (1999a). Differential distribuition and ecology of Prochloococcus and Synechococcus in oceanic waters: A review. Bulletin de l’Institut oceanographique, Monaco, 19, 457-475.

  • Partensky, F., Hess, W. R., & Vaulot, D. (1999b). Prochlorococcus, a Marine photosynthetic prokaryote of global significance. Microbiology and Molecular Biology Reviews, 63(1), 106-127. https://doi.org/10.1128/mmbr.63.1.106-127.1999

  • Powley, H. R., Krom, M. D., & Van Cappellen, P. (2017). Understanding the unique biogeochemistry of the Mediterranean Sea: Insights from a coupled phosphorus and nitrogen model. Global Biogeochemical Cycles, 31, 1010-1031. https://doi.org/10.1002/2017GB005648

  • Scanlan, D. J. (2012). Marine picocyanobacteria. In B. A. Whitton (Ed.), Ecology of Cyanobacteria II (pp. 503-533). Springer. https://doi.org/10.1007/978-94-007-3855-3_20

  • Shaari, F., Mustapha, M. A., Ali, M. M., & Lihan, T. (2013, November). Chlorophyll-a and nutrient distribution of Pahang coastal waters during southwest monsoon using satellite images. In AIP Conference Proceedings (Vol. 1571, No. 1, pp. 493-497). American Institute of Physics. https://doi.org/10.1063/1.4858703

  • Sherr, E. B., Sherr, B. F., & Wheeler, P. A. (2005). Distribution of coccoid cyanobacteria and small eukaryotic phytoplankton in the upwelling ecosystem off the Oregon coast during 2001 and 2002. Deep-Sea Research Part II: Topical Studies in Oceanography, 52, 317-330. https://doi.org/10.1016/j.dsr2.2004.09.020

  • Shaik, A. U. R., Biswas, H., & Pal, S. (2017). Increased CO2 availability promotes growth of a tropical coastal diatom assemblage (Goa coast, Arabian Sea, India). Diatom Research, 32(3), 325-339. https://doi.org/10.1080/0269249X.2017.1379443

  • Shi, X., Li, S., Li, H., Chen, F., & Wu, Q. (2019). The community structure of picophytoplankton in Lake Fuxian, a deep and oligotrophic mountain lake. Frontiers in Microbiology, 10, Article 2016. https://doi.org/10.3389/fmicb.2019.02016

  • Suttle, C. A., & Chan, A. M. (1994). Dynamics and distribution of cyanophages and their effect on marine Synechococcus spp. Applied and Environmental Microbiology, 60(9), 3167-3174. https://doi.org/10.1128/aem.60.9.3167-3174.1994

  • Vaulot, D., Eikrem, W., Viprey, M., & Moreau, H. (2008). The diversity of small eukaryotic phytoplankton (< or =3 microm) in marine ecosystems. FEMS Microbiology Reviews, 32(5), 795-820. https://doi.org/10.1111/j.1574-6976.2008.00121.x

  • Vaulot, D., Courties, C., & Partensky, F. (1989). A simple method to preserve oceanic phytoplankton for flow cytometric analyses through division by the corresponding parameters. Cytometry, 10, 629-635.

  • Wang, K., Wommack, K. E., & Chen, F. (2011). Abundance and distribution of Synechococcus spp. and cyanophages in the Chesapeake Bay. Applied and Environmental Microbiology, 77(21), 7459-7468. https://doi.org/10.1128/AEM.00267-11

  • Wei, Y., Huang, D., Zhang, G., Zhao, Y., & Sun, J. (2020). Biogeographic variations of picophytoplankton in three contrasting seas: The Bay of Bengal, South China Sea and western Pacific Ocean. Aquatic Microbial Ecology, 84, 91-103. https://doi.org/10.3354/ame01928

  • Weinbauer, M. G., & Höfle, M. G. (1998). Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake. Applied and Environmental Microbiology, 64, 431-438. https://doi.org/10.1128/aem.64.2.431-438.1998.

  • Yanagi, T., Sachoemar, S. I., Takao, T., & Fujiwara, S. (2001). Seasonal variation of stratification in the gulf of Thailand. International Journal of Oceans and Oceanography, 57, 461-470. https://doi.org/10.1023/A:1021237721368.

  • Yang, Y., & Jiao, N. (2004). Dynamics of picoplankton in the Nansha Islands area of the South China Sea. Acta Oceanologica Sinica, 23, 493-504.

  • Zainol, Z., & Akhir, M. F. (2016). Coastal upwelling in the vicinity of Tioman Island. Journal of Sustainability Science and Management Special Issue Number 1: The International Seminar on the Straits of Malacca and the South China Sea, 71-80.

  • Zhao, S., Wei, J., Yue, H., & Xiao, T. (2010). Picophytoplankton abundance and community structure in the Philippine Sea, western Pacific. Chinese Journal of Oceanology and Limnology, 28(1), 88-95. https://doi.org/10.1007/s00343-010-9274-0

  • Zwirglmaier, K., Jardillier, L., Ostrowski, M., Mazard, S., Garczarek, L., Vaulot, D., Not, F., Massana, R., Ulloa, O., & Scanlan, D. J. (2008). Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environmental Microbiology, 10(1), 147-161. https://doi.org/10.1111/j.1462-2920.2007.01440.x

ISSN 0128-7702

e-ISSN 2231-8534

Article ID


Download Full Article PDF

Share this article

Recent Articles