PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 47 (4) Nov. 2024 / JTAS-3009-2024

 

Growth Response and Gene Expression Analysis of Chili Pepper (Capsicum annuum L.) Plant Dehydrin Against Salt Stress and Drought In vitro

Elly Syafriani, Widhi Dyah Sawitri and Ersa Nur Syafia

Pertanika Journal of Tropical Agricultural Science, Volume 47, Issue 4, November 2024

DOI: https://doi.org/10.47836/pjtas.47.4.22

Keywords: Chili pepper, dehydrin, drought stress, morpho-physiology, salt stress

Published on: 29 November 2024

The need for plants resistant to abiotic stress now and in the future is predicted to be very high. It is related to extreme climate change and converting agricultural land into residential and industrial land. As Indonesia’s national strategic commodity, chili peppers require special attention when assembling chili peppers resistant to salinity and drought stress. New varieties of chili pepper plants resistant to saline and drought can be obtained through unconventional breeding (overexpression of the dehydrin gene). As a first step in assembling saline and drought-resistant chili plants, growth response and dehydrin gene expression tests were carried out from explants of chili pepper plants of the TM999 variety in vitro on salt and drought treatment media. This study aims to obtain information on the initial response to the growth and expression of the dehydrin gene from chili pepper plants of the TM999 variety before further research is carried out to increase the expression of the dehydrin gene through a molecular approach. The method used in this study is a complete randomized design with two treatments: Sodium chloride (NaCl) and polyethylene glycol (PEG-6000). The results obtained in this study showed that chili pepper varieties TM999 were more tolerant of drought stress than salinity based on several growth response data in both treatments. The analysis of dehydrin gene expression in both treatments showed that the gene expression was strongly influenced by the two strokes given. NaCl and PEG-6000 treatments increased the dehydrin gene expression of chili pepper plants grown in vitro.

  • Alharby, H. F., Metwali, E. M. R., Fuller, M. P., & Aldhebiani, A. Y. (2016). The alteration of mRNA expression of SOD and GPX genes, and proteins in tomato (Lycopersicon esculentum Mill) under stress of NaCl and/or ZnO nanoparticles. Saudi Journal of Biological Sciences, 23(6), 773–781. https://doi.org/10.1016/j.sjbs.2016.04.012

  • Brini, F., Hanin, M., Lumbreras, V., Amara, I., Khoudi, H., Hassairi, A., Pagès, M., & Masmoudi, K. (2007). Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Reports, 26, 2017–2026. https://doi.org/10.1007/s00299-007-0412-x

  • Chen, R.-G., Jing, H., Guo, W.-L., Wang, S.-B., Ma, F., Pan, B.-G., & Gong, Z.-H. (2015). Silencing of dehydrin CaDHN1 diminishes tolerance to multiple abiotic stresses in Capsicum annuum L. Plant Cell Reports, 34, 2189–2200. https://doi.org/10.1007/s00299-015-1862-1

  • Chun, H. C., Lee, S., Choi, Y. D., Gong, D. H., & Jung, K. Y. (2021). Effects of drought stress on root morphology and spatial distribution of soybean and adzuki bean. Journal of Integrative Agriculture, 20(10), 2639–2651. https://doi.org/10.1016/S2095-3119(20)63560-2

  • Cushman, J. C. (2001). Osmoregulation in plants: Implications for agriculture. American Zoologist, 41(4), 758–769. https://doi.org/10.1668/0003-1569(2001)041[0758:OIPIFA]2.0.CO;2

  • Durand, M., Porcheron, B., Hennion, N., Maurousset, L., Lemoine, R., & Pourtau, N. (2016). Water deficit enhances C export to the roots in Arabidopsis thaliana plants with contribution of sucrose transporters in both shoot and roots. Plant Physiology, 170(3), 1460–1479. https://doi.org/10.1104/pp.15.01926

  • Farooq, M., Basra, S. M. A., Wahid, A., Ahmad, N., & Saleem, B. A. (2009). Improving the drought tolerance in rice (Oryza sativa L.) by exogenous application of salicylic acid. Journal of Agronomy and Crop Science, 195(4), 237–246. https://doi.org/10.1111/j.1439-037X.2009.00365.x

  • Farooq, M., Kobayashi, N., Ito, O., Wahid, A., & Serraj, R. (2010). Broader leaves result in better performance of indica rice under drought stress. Journal of Plant Physiology, 167(13), 1066–1075. https://doi.org/10.1016/j.jplph.2010.03.003

  • Jing, H., Li, C., Ma, F., Ma, J.-H., Khan, A., Wang, X., Zhao, L.-Y., Gong, Z.-H., & Chen, R.-G. (2016). Genome-wide identification, expression diversication of dehydrin gene family and characterization of CaDHN3 in pepper (Capsicum annuum L.). PLOS One, 11(8), e0161073. https://doi.org/10.1371/journal.pone.0161073

  • Kang, J., Peng, Y., & Xu, W. (2022). Crop root responses to drought stress: Molecular mechanisms, nutrient regulations, and interactions with microorganisms in the rhizosphere. International Journal of Molecular Sciences, 23(16), 9310. https://doi.org/10.3390/ijms23169310

  • Li, Y., Li, H., Li, Y., & Zhang, S. (2017). Improving water-use efficiency by decreasing stomatal conductance and transpiration rate to maintain higher ear photosynthetic rate in drought-resistant wheat. The Crop Journal, 5(3), 231–239. https://doi.org/10.1016/j.cj.2017.01.001

  • Ludwiczak, A., Osiak, M., Cárdenas-Pérez, S., Lubińska-Mielińska, S., & Piernik, A. (2021). Osmotic stress or ionic composition: Which affects the early growth of crop species more? Agronomy, 11(3), 435. https://doi.org/10.3390/agronomy11030435

  • Ma, Y., Dias, M. C., & Freitas, H. (2020). Drought and salinity stress responses and microbe-induced tolerance in plants. Frontiers in Plant Science, 11, 591911. https://doi.org/10.3389/fpls.2020.591911

  • Meng, Y.-C., Zhang, H.-F., Pan, X.-X., Chen, N., Hu, H.-F., ul Haq, S., Khan, A., & Chen, R.-G. (2021). CaDHN3, a pepper (Capsicum annuum L.) dehydrin gene enhances the tolerance against salt and drought stresses by reducing ROS accumulation. International Journal of Molecular Sciences, 22(6), 3205. https://doi.org/10.3390/ijms22063205

  • Menteri Pertanian Republik Indonesia. (2005). Pelepassan cabe keriting hibrida TM 999 sebagai varietas unggul [Release of hybrid curly pepper TM 999 as a superior variety]. https://benih.pertanian.go.id/storage/VdemE1na7WTqlTyhPTeiIcP8p9BdXp-metaU0sgQ2FiYWkgS2VyaXRpbmcgVE0gOTk5LnBkZg==-.pdf

  • Poorter, H., Niklas, K. J., Reich, P. B., Oleksyn, J., Poot, P., & Mommer, L. (2012). Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. The New Phytologist, 193(1), 30–50. https://doi.org/10.1111/j.1469-8137.2011.03952.x

  • Puhakainen, T., Hess, M. W., Mäkelä, P., Svensson, J., Heino, P., & Palva, E. T. (2004). Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Molecular Biology, 54, 743–753. https://doi.org/10.1023/B:PLAN.0000040903.66496.a4

  • Rao, K. V. M., Raghavendra, A. S., & Reddy, K. J. (Eds.). (2006). Physiology and molecular biology of stress tolerance in plants. Springer. https://doi.org/10.1007/1-4020-4225-6

  • Sari, D. P., & Harlita. (2018). Preparasi hands free section dengan teknik replika untuk identifikasi stomata [Hand free section preparation through replica technique for stomata identification]. Proceeding Biology Education Conference: Biology, Science, Enviromental, and Learning, 15(1), 660-664.

  • Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3, 1101–1108. https://doi.org/10.1038/nprot.2008.73

  • Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), 259. https://doi.org/10.3390/plants10020259

  • Sirappa, M. P., & Titahena, M. L. J. (2014). Improvement of suboptimal land productivity approach by land and plant management. Journal of Tropical Soils, 19(2), 99–109.

  • Smith, M. A., & Graether, S. P. (2022). The disordered dehydrin and its role in plant protection: A biochemical perspective. Biomolecules, 12(2), 294. https://doi.org/10.3390/biom12020294

  • van Zelm, E., Zhang, Y., & Testerink, C. (2020). Salt tolerance mechanisms of plants. Annual Review of Plant Biology, 71, 403–433. https://doi.org/10.1146/annurev-arplant-050718-100005

  • Xiao, F., & Zhou, H. (2023). Plant salt response: Perception, signaling, and tolerance. Frontiers in Plant Science, 13, 1053699. https://doi.org/10.3389/fpls.2022.1053699

  • Xu, Z., Jiang, Y., Jia, B., & Zhou, G. (2016). Elevated-CO2 response of stomata and its dependence on environmental factors. Frontiers in Plant Science, 7, 657. https://doi.org/10.3389/fpls.2016.00657

  • Yang, Y., & Guo, Y. (2018). Elucidating the molecular mechanisms mediating plant salt-stress responses. The New Phytologist, 217(2), 523–539. https://doi.org/10.1111/nph.14920

  • Yuxiu, Z., Zi, W., & Jin, X. (2007). Molecular mechanism of dehydrin in response to environmental stress in plant. Progress in Natural Science, 17(3), 237–246. https://doi.org/10.1080/10020070612331343254

  • Zhang, Y., Lv, Y., Jahan, N., Chen, G., Ren, D., & Guo, L. (2018). Sensing of abiotic stress and ionic stress responses in plants. International Journal of Molecular Sciences, 19(11), 3298. https://doi.org/10.3390/ijms19113298

  • Zhao, C., Zhang, H., Song, C., Zhu, J.-K., & Shabala, S. (2020). Mechanisms of plant responses and adaptation to soil salinity. The Innovation, 1(1), 100017. https://doi.org/10.1016/j.xinn.2020.100017

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JTAS-3009-2024

Download Full Article PDF

Share this article

Related Articles