e-ISSN 2231-8542
ISSN 1511-3701
Elly Syafriani, Widhi Dyah Sawitri and Ersa Nur Syafia
Pertanika Journal of Tropical Agricultural Science, Volume 47, Issue 4, November 2024
DOI: https://doi.org/10.47836/pjtas.47.4.22
Keywords: Chili pepper, dehydrin, drought stress, morpho-physiology, salt stress
Published on: 29 November 2024
The need for plants resistant to abiotic stress now and in the future is predicted to be very high. It is related to extreme climate change and converting agricultural land into residential and industrial land. As Indonesia’s national strategic commodity, chili peppers require special attention when assembling chili peppers resistant to salinity and drought stress. New varieties of chili pepper plants resistant to saline and drought can be obtained through unconventional breeding (overexpression of the dehydrin gene). As a first step in assembling saline and drought-resistant chili plants, growth response and dehydrin gene expression tests were carried out from explants of chili pepper plants of the TM999 variety in vitro on salt and drought treatment media. This study aims to obtain information on the initial response to the growth and expression of the dehydrin gene from chili pepper plants of the TM999 variety before further research is carried out to increase the expression of the dehydrin gene through a molecular approach. The method used in this study is a complete randomized design with two treatments: Sodium chloride (NaCl) and polyethylene glycol (PEG-6000). The results obtained in this study showed that chili pepper varieties TM999 were more tolerant of drought stress than salinity based on several growth response data in both treatments. The analysis of dehydrin gene expression in both treatments showed that the gene expression was strongly influenced by the two strokes given. NaCl and PEG-6000 treatments increased the dehydrin gene expression of chili pepper plants grown in vitro.
Alharby, H. F., Metwali, E. M. R., Fuller, M. P., & Aldhebiani, A. Y. (2016). The alteration of mRNA expression of SOD and GPX genes, and proteins in tomato (Lycopersicon esculentum Mill) under stress of NaCl and/or ZnO nanoparticles. Saudi Journal of Biological Sciences, 23(6), 773–781. https://doi.org/10.1016/j.sjbs.2016.04.012
Brini, F., Hanin, M., Lumbreras, V., Amara, I., Khoudi, H., Hassairi, A., Pagès, M., & Masmoudi, K. (2007). Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Reports, 26, 2017–2026. https://doi.org/10.1007/s00299-007-0412-x
Chen, R.-G., Jing, H., Guo, W.-L., Wang, S.-B., Ma, F., Pan, B.-G., & Gong, Z.-H. (2015). Silencing of dehydrin CaDHN1 diminishes tolerance to multiple abiotic stresses in Capsicum annuum L. Plant Cell Reports, 34, 2189–2200. https://doi.org/10.1007/s00299-015-1862-1
Chun, H. C., Lee, S., Choi, Y. D., Gong, D. H., & Jung, K. Y. (2021). Effects of drought stress on root morphology and spatial distribution of soybean and adzuki bean. Journal of Integrative Agriculture, 20(10), 2639–2651. https://doi.org/10.1016/S2095-3119(20)63560-2
Cushman, J. C. (2001). Osmoregulation in plants: Implications for agriculture. American Zoologist, 41(4), 758–769. https://doi.org/10.1668/0003-1569(2001)041[0758:OIPIFA]2.0.CO;2
Durand, M., Porcheron, B., Hennion, N., Maurousset, L., Lemoine, R., & Pourtau, N. (2016). Water deficit enhances C export to the roots in Arabidopsis thaliana plants with contribution of sucrose transporters in both shoot and roots. Plant Physiology, 170(3), 1460–1479. https://doi.org/10.1104/pp.15.01926
Farooq, M., Basra, S. M. A., Wahid, A., Ahmad, N., & Saleem, B. A. (2009). Improving the drought tolerance in rice (Oryza sativa L.) by exogenous application of salicylic acid. Journal of Agronomy and Crop Science, 195(4), 237–246. https://doi.org/10.1111/j.1439-037X.2009.00365.x
Farooq, M., Kobayashi, N., Ito, O., Wahid, A., & Serraj, R. (2010). Broader leaves result in better performance of indica rice under drought stress. Journal of Plant Physiology, 167(13), 1066–1075. https://doi.org/10.1016/j.jplph.2010.03.003
Jing, H., Li, C., Ma, F., Ma, J.-H., Khan, A., Wang, X., Zhao, L.-Y., Gong, Z.-H., & Chen, R.-G. (2016). Genome-wide identification, expression diversication of dehydrin gene family and characterization of CaDHN3 in pepper (Capsicum annuum L.). PLOS One, 11(8), e0161073. https://doi.org/10.1371/journal.pone.0161073
Kang, J., Peng, Y., & Xu, W. (2022). Crop root responses to drought stress: Molecular mechanisms, nutrient regulations, and interactions with microorganisms in the rhizosphere. International Journal of Molecular Sciences, 23(16), 9310. https://doi.org/10.3390/ijms23169310
Li, Y., Li, H., Li, Y., & Zhang, S. (2017). Improving water-use efficiency by decreasing stomatal conductance and transpiration rate to maintain higher ear photosynthetic rate in drought-resistant wheat. The Crop Journal, 5(3), 231–239. https://doi.org/10.1016/j.cj.2017.01.001
Ludwiczak, A., Osiak, M., Cárdenas-Pérez, S., Lubińska-Mielińska, S., & Piernik, A. (2021). Osmotic stress or ionic composition: Which affects the early growth of crop species more? Agronomy, 11(3), 435. https://doi.org/10.3390/agronomy11030435
Ma, Y., Dias, M. C., & Freitas, H. (2020). Drought and salinity stress responses and microbe-induced tolerance in plants. Frontiers in Plant Science, 11, 591911. https://doi.org/10.3389/fpls.2020.591911
Meng, Y.-C., Zhang, H.-F., Pan, X.-X., Chen, N., Hu, H.-F., ul Haq, S., Khan, A., & Chen, R.-G. (2021). CaDHN3, a pepper (Capsicum annuum L.) dehydrin gene enhances the tolerance against salt and drought stresses by reducing ROS accumulation. International Journal of Molecular Sciences, 22(6), 3205. https://doi.org/10.3390/ijms22063205
Menteri Pertanian Republik Indonesia. (2005). Pelepassan cabe keriting hibrida TM 999 sebagai varietas unggul [Release of hybrid curly pepper TM 999 as a superior variety]. https://benih.pertanian.go.id/storage/VdemE1na7WTqlTyhPTeiIcP8p9BdXp-metaU0sgQ2FiYWkgS2VyaXRpbmcgVE0gOTk5LnBkZg==-.pdf
Poorter, H., Niklas, K. J., Reich, P. B., Oleksyn, J., Poot, P., & Mommer, L. (2012). Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. The New Phytologist, 193(1), 30–50. https://doi.org/10.1111/j.1469-8137.2011.03952.x
Puhakainen, T., Hess, M. W., Mäkelä, P., Svensson, J., Heino, P., & Palva, E. T. (2004). Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Molecular Biology, 54, 743–753. https://doi.org/10.1023/B:PLAN.0000040903.66496.a4
Rao, K. V. M., Raghavendra, A. S., & Reddy, K. J. (Eds.). (2006). Physiology and molecular biology of stress tolerance in plants. Springer. https://doi.org/10.1007/1-4020-4225-6
Sari, D. P., & Harlita. (2018). Preparasi hands free section dengan teknik replika untuk identifikasi stomata [Hand free section preparation through replica technique for stomata identification]. Proceeding Biology Education Conference: Biology, Science, Enviromental, and Learning, 15(1), 660-664.
Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3, 1101–1108. https://doi.org/10.1038/nprot.2008.73
Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), 259. https://doi.org/10.3390/plants10020259
Sirappa, M. P., & Titahena, M. L. J. (2014). Improvement of suboptimal land productivity approach by land and plant management. Journal of Tropical Soils, 19(2), 99–109.
Smith, M. A., & Graether, S. P. (2022). The disordered dehydrin and its role in plant protection: A biochemical perspective. Biomolecules, 12(2), 294. https://doi.org/10.3390/biom12020294
van Zelm, E., Zhang, Y., & Testerink, C. (2020). Salt tolerance mechanisms of plants. Annual Review of Plant Biology, 71, 403–433. https://doi.org/10.1146/annurev-arplant-050718-100005
Xiao, F., & Zhou, H. (2023). Plant salt response: Perception, signaling, and tolerance. Frontiers in Plant Science, 13, 1053699. https://doi.org/10.3389/fpls.2022.1053699
Xu, Z., Jiang, Y., Jia, B., & Zhou, G. (2016). Elevated-CO2 response of stomata and its dependence on environmental factors. Frontiers in Plant Science, 7, 657. https://doi.org/10.3389/fpls.2016.00657
Yang, Y., & Guo, Y. (2018). Elucidating the molecular mechanisms mediating plant salt-stress responses. The New Phytologist, 217(2), 523–539. https://doi.org/10.1111/nph.14920
Yuxiu, Z., Zi, W., & Jin, X. (2007). Molecular mechanism of dehydrin in response to environmental stress in plant. Progress in Natural Science, 17(3), 237–246. https://doi.org/10.1080/10020070612331343254
Zhang, Y., Lv, Y., Jahan, N., Chen, G., Ren, D., & Guo, L. (2018). Sensing of abiotic stress and ionic stress responses in plants. International Journal of Molecular Sciences, 19(11), 3298. https://doi.org/10.3390/ijms19113298
Zhao, C., Zhang, H., Song, C., Zhu, J.-K., & Shabala, S. (2020). Mechanisms of plant responses and adaptation to soil salinity. The Innovation, 1(1), 100017. https://doi.org/10.1016/j.xinn.2020.100017
ISSN 1511-3701
e-ISSN 2231-8542