Home / Regular Issue / JTAS Vol. 45 (4) Nov. 2022 / JTAS-2477-2022

 

Influence of Dietary Lysine Level on Growth Performance, Feed Efficiency, and Body Composition of Sangkuriang Catfish (Clarias gariepinus var. Sangkuriang) Fingerlings

Diana Rachmawati, Tita Elfitasari, Istiyanto Samidjan, Dewi Nurhayati and Putut Har Riyadi

Pertanika Journal of Tropical Agricultural Science, Volume 45, Issue 4, November 2022

DOI: https://doi.org/10.47836/pjtas.45.4.12

Keywords: Catfish, efficiency, feed, growth, lysine

Published on: 4 November 2022

The high consumer demand in Indonesia encourages catfish farmers to conduct an intensive culture. A low feed efficiency mainly occurs in cultivating Sangkuriang catfish resulting in poor growth. This condition might be caused by low lysine content, as lysine is an essential amino acid that the fish cannot synthesize. The present study aimed to investigate the effect of lysine supplementation in feed on protein digestibility, feed efficiency, and growth of Sangkuriang catfish (Clarias gariepinus var. Sangkuriang) fingerlings. The study used 270 Sangkuriang catfish with an average wet weight of 7.54 ± 0.13 g/fish. The experimental feed contained protein, energy, and amino acid, and then various doses of lysine were added to the experimental feed: (1) 0.0%, (2) 0.5%, (3) 1.0%, (4) 1.5%, (5) 2.0%, and (6) 2.5%. Weight gain (WG), protein digestibility (ADCp), the efficiency of feed utilization (EFU), relative growth rate (RGR), feed conversion ratio (FCR), protein efficiency ratio (PER), and protein retention (PR) of catfish were evaluated for 8 weeks. The results found that the supplementation of lysine in feed significantly (P < 0.05) influenced WG, ADCp, EFU, RGR, FCR, PER, and PR of Sangkuriang catfish fingerling. However, there was no significant effect (P > 0.05) on the SR of Sangkuriang catfish fingerling. The supplementation of 1% lysine/kg feed was the optimal dose to improve the feed efficiency and growth of Sangkuriang catfish fingerlings by 83.79% and 3.94%/day, respectively. Therefore, the supplementation of lysine could increase Sangkuriang catfish production.

  • Ahmed, I., & Khan, M. A. (2004). Dietary lysine requirement of fingerling Indian major carp, Cirrhinus mrigala (Hamilton). Aquaculture, 235(1-4), 499-511. https://doi.org/10.1016/j.aquaculture.2003.12.009

  • Akiyama, D. M., Domny, W. G., & Lawrence, A. L. (1991). Penaeid shrimp nutrition for the commercial feed industry: Revised. American Soybean Association.

  • Bicudo, A. J. A., Sado, R., & Cyrino, J. E. P. (2009). Dietary lysine requirement of juvenile pacu Piaractus mesopotamicus (Holmberg, 1887). Aquaculture, 297(1-4), 151-156. https://doi.org/10.1016/j.aquaculture.2009.09.031

  • Borlongan, I. G., & Coloso, R. M. (1993). Requirement of juvenile milk fish (Chanos chanos) for essential amino acid. Journal of Nutrition, 123(1), 125-132. https://doi.org/10.1093/jn/123.1.125

  • Bureau, D. P., & Encarnacao, P. M. (2006). Adequately defining the amino acid requirements of fish: The case example of lysine. https://nutricionacuicola.uanl.mx/index.php/acu/article/view/159/157

  • Dairiki, J. K., Dias, C. T. S., & Cyrino, J. E. P. (2007). Lysine requirements of largemouth bass, Micropterus salmoides: A comparison of methods of analysis of dose-response trials data. Journal of Applied Aquaculture, 19(4), 1-27. https://doi.org/10.1300/J028v19n04_01

  • Deng, D.-F., Dominy, W., Ju, Z. Y., Koshio, S., Murashige, R., & Wilson, R. P. (2010). Dietary lysine requirement of juvenile Pacific threadfin (Polydactylus sexfilis). Aquaculture, 308(1-2), 44–48. https://doi.org/10.1016/j.aquaculture.2010.07.041

  • Ebeneezara, S., Vijayagopal, P., Srivastava, P. P., Gupta, S., Sikendrakumar, S., Varghese, T., Prabua, D. L., Chandrasekar, S., Varghese, E., Sayooj, P., Tejpal, C. S., & Wilson L. (2019). Dietary lysine requirement of juvenile Silver pompano, Trachinotus blochii (Lacepede, 1801). Aquaculture, 511, 734234. https://doi.org/10.1016/j.aquaculture.2019.734234

  • Elesho, F. E., Kröckel, S., Ciavoni, E., Sutter, D. A. H., Verreth, J. A. J., & Schrama, J. W. (2021). Effect of feeding frequency on performance, nutrient digestibility, energy and nitrogen balances in juvenile African catfish (Clarias gariepinus) fed diets with two levels of crystalline methionine. Animal Feed Science and Technology, 281, 115098. https://doi.org/10.1016/j.anifeedsci.2021.115098

  • El-Husseiny, O. M., Hassan, M. I., El-Haroun, E. R., & Suloma, A. (2017). Utilization of poultry by-product meal supplemented with L-lysine as fish meal replacer in the diet of African catfish Clarias gariepinus (Burchell, 1822). Journal of Applied Aquaculture, 30(1), 63–75. https://doi.org/10.1080/10454438.2017.1412844

  • Farhat, F., & Khan, M. A. (2013). Dietary L-lysine requirement of fingerling stinging catfish, Heteropneustes fossilis (Bloch) for optimizing growth, fish meal conversion, protein and lysine deposition. Aquaculture Research, 44(4), 523-533. https://doi.org/10.1111/j.1365-2109.2011.03054.x

  • Forster, I., & Ogata, H. Y. (1998). Lysine requirement of juvenile Japanese flounder Paralichthys olivaceus and juvenile red sea bream Pagrus major. Aquaculture, 161(1-4), 131–142. https://doi.org/10.1016/S0044-8486(97)00263-9

  • Giri, I. N. A., Sentika, A. S., Suwirya, K., & Marzuqi, M. (2009). Kandungan asam amino lisin optimal dalam pakan untuk pertumbuhan benih ikan kerapu sunu, Plectropomus leopardus [The optimal amino acid content of lysine in the feed for the growth of fry of the sunu grouper, Plectropomus leopardus]. Jurnal Riset Aquakultur, 4(3), 357-366. https://doi.org/10.15578/jra.4.3.2009.357-366

  • Hansen, A.-C., Rosenlund, G., Karslen, O., Koppe, W., & Hemre, G.-I. (2007). Total replacement of fishmeal with plant proteins in diets for Atlantic cod (Gadus morhua L.) I: Effects on growth and protein retention. Aquaculture, 272(1), 599–611. https://doi.org/10.1016/j.aquaculture.2007.08.034

  • Ju, Z. Y., Forster, I., Conquest, L., Dominy, W., Kuo, W. C., & Horgen, F. D. (2008). Determination of microbial community structures on shrimp floc cultures by biomarkers and analysis of floc amino acid profiles. Aquaculture Research, 39(2), 118–134. https://doi.org/10.1111/j.1365-2109.2007.01856.x

  • Khan, M. A., & Abidi, S. F. (2011). Dietary arginine requirement of Heteropneustes fossilis fry (Bloch) based on growth, nutrient retention and hematological parameters. Aquaculture Nutrition, 17(4), 418-428. https://doi.org/10.1111/j.1365-2095.2010.00819.x

  • Lehninger, A. L., & Nelson, D. L. (1993). Principles of biochemistry. Worth Publishers.

  • Mai, K. S., Zhang, L., Ai, Q., Duan, Q., Zhang, C., Li, H., Wan, J., & Liufu, Z. (2006). Dietary lysine requirement of juvenile Japanese seabass, (Lateolabrax japonicus). Aquaculture, 258(1-4), 535-542. https://doi.org/10.1016/j.aquaculture.2006.04.043

  • Miles, D. R., & Chapman, A. F. (2008). The concept of ideal protein in formulation of aquaculture feeds: FA144/FA144, 3/2007. EDIS, 2007(11). https://doi.org/10.32473/edis-fa144-2007

  • Moon, H. Y., & Gatlin III, D. M. (1991). Total sulfur amino acid requirement of juvenile red drum, Sciaenops ocellatus. Aquaculture, 95(1-2), 97-106. https://doi.org/10.1016/0044-8486(91)90076-J

  • National Research Council. (2011). Nutrient requirements of fish and shrimp. The National Academies Press. https://doi.org/10.17226/13039

  • Nguyen, K. A. T., Nguyen, T. A. T., Bui, C. T. P N., Jolly, C., & Nguelifack, B. M. (2021). Shrimp farmers risk management and demand for insurance in Ben Tre and Tra Vinh Provinces in Vietnam. Aquaculture Reports, 19, 100606. https://doi.org/10.1016/j.aqrep.2021.100606

  • Nguyen, L., & Davis, D. A. (2016). Comparison of crystalline lysine and intact lysine used as a supplement in practical diets of channel catfish (Ictalurus punctatus) and Nile tilapia (Oreochromis niloticus). Aquaculture, 464, 331-339. https://doi.org/10.1016/j.aquaculture.2016.07.005

  • Rachmawati, D., Hutabarat, J., Samidjan, I., & Windarto, S. (2019). The effects of papain enzyme-enriched diet on protease enzyme activities, fish meal efficiency, and growth of fingerlings of Sangkuriang catfish (Clarias gariepinus) reared in tarpaulin pool. AACL Bioflux, 12(6), 2177-2187.

  • Rachmawati, D., Samidjan, I., & Mel, M. (2017). Effect of phytase on growth performance, fish meal utilization efficiency and nutrient digestibility in fingerlings of Chanos chanos (Forsskal 1775). Philippine Journal of Science, 146(3), 237-245.

  • Rawles, S. D., Thompson, K. R., Brady, Y. J., Metts, L. S., Aksoy, M. Y., Gannam, A. L., Twibell, R. G., & Webster, C. D. (2011). Effects of replacing fish meal with poultry by-product meal and soybean meal and reduced protein level on the performance and immune status of pond-grown sunshine bass (Morone chrysops × M. saxatilis). Aquaculture Nutrition, 17(3), e708-e721. https://doi.org/10.1111/j.1365-2095.2010.00831.x

  • Robinson, E. H., Menghe, H. L., & Bruce, B. M. (2007). A practical guide to nutrition, feeds, and feeding of catfish (2nd revision). https://agrilife.org/fisheries2/files/2013/09/A-Practical-Guide-to-Nutrition-Feeds-and-Feeding-of-Catfish.pdf

  • Ruchimat, T., Matsumoto, T., Hosokawa, H., Itoh, Y., & Shimeno, S. (1997). Quantitative lysine requirement of yellow tail (Serola quinqueradiata). Aquaculture, 158(3-4), 331-339. https://doi.org/10.1016/S0044-8486(97)00215-9

  • Santiago, C. B., & Lovell, R. T. (1988). Amino acid requirements for growth of Nile tilapia. Journal of Nutrition, 118(12), 1540-1546. https://doi.org/10.1093/jn/118.12.1540

  • SAS. (2004). SAS/STAT® 9.1: User’s guide. SAS Institute Inc.

  • Steel, R. G. D., Torrie, J. H., & Dickey, D. A. (1997). Principles and procedures of statistics: A biometrical approach (3rd ed.). McGraw Hill, Inc.

  • Steffens, W. (1989). Principles of fish nutrition. Ellis Horwood.

  • Williams, K., Barlow, C., & Rodgers, L. (2001). Efficacy of crystalline and protein-bound amino acids for amino acid enrichment of diets for barramundi/Asian seabass (Lates calcarifer Bloch). Aquaculture Research, 32(S1), 415-429, https://doi.org/10.1046/j.1355-557x.2001.00032.x

  • Xie, F., Ai, Q., Mai, K., Xu, W. & Wang, X. (2012). Dietary lysine requirement of large yellow croaker (Pseudosciaena crocea, Richardson 1846) larvae. Aquaculture Research, 43(6), 917-928. https://doi.org/10.1111/j.1365-2109.2011.02906.x

  • Zhang, X., Wang, H., Zhang, J., Lin, B., Chen, L., Wang, Q., Li, G., & Deng, J. (2021). Utilization of different lysine isomers: A case study on the growth, metabolic enzymes, antioxidant capacity and muscle amino acid composition in Macrobrachium rosenbergii. Animal Feed Science and Technology, 280, 115078. https://doi.org/10.1016/j.anifeedsci.2021.115078

  • Zhao, Y., Li, J. Y., Jiang, Q., Zhou, X. Q., Feng, L., Liu, Y., Jiang, W. D., Wu, P., Zhou, J., Zhao, J., & Jiang, J. (2020). Leucine improved growth performance, muscle growth, and muscle protein deposition through AKT/TOR and AKT/FOXO3a signaling pathways in hybrid catfish Pelteobagrus vachelli × Leiocassis longirostris. Cells, 9(2), 1-22. https://doi.org/10.3390/cells9020327

  • Zhou, Q.-C., Wu, Z.-H., Chi, S.-Y., & Yang, Q.-H. (2007). Dietary lysine requirement of juvenile cobia (Rachycentron canadum). Aquaculture, 273(4), 634-640. https://doi.org/10.1016/j.aquaculture.2007.08.056

  • Zhou, F., Shao, J., Xu, R., Ma, J., & Xu, Z. (2010). Quantitative L-lysine requirement of juvenile black sea bream (Sparus macrocephalus). Aquaculture Nutrition, 16(2), 194-204. https://doi.org/10.1111/j.1365-2095.2009.00651.x

  • Ziethoun, I. H., Ullrey, D. E., Magee, W. T., Gill, J. L., & Bergen, W. G. (1976). Quantifying nutrient requirements of fish. Journal of the Fisheries Board of Canada, 33(1), 167-172. https://doi.org/10.1139/f76-019

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JTAS-2477-2022

Download Full Article PDF

Share this article

Recent Articles