e-ISSN 2231-8542
ISSN 1511-3701
J
Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J
Keywords: J
Published on: J
J
Abdelmohsen, U. R., Grkovic, T., Balasubramanian, S., Kamel, M. S., Quinn, R. J., & Hentschel, U. (2015). Elicitation of secondary metabolism in actinomycetes. Biotechnology Advances, 33(6), 798–811. https://doi.org/10.1016/j.biotechadv.2015.06.003
Akhter, N., Liu, Y., Auckloo, B., Shi, Y., Wang, K., Chen, J., Wu, X., & Wu, B. (2018). Stress-driven discovery of new angucycline-type antibiotics from a marine Streptomyces pratensis NA-ZhouS1. Marine Drugs, 16(9), Article 331. http://dx.doi.org/10.3390/md16090331
Ariffin, S., Abdullah, M. F., & Mohamad, S. A. S. (2017). Identification and antimicrobial properties of Malaysian Mangrove Actinomycetes. International Journal on Advanced Science, Engineering and Information Technology, 7(1), Article 71. https://doi.org/10.18517/ijaseit.7.1.1113
Balagurunathan, R., Radhakrishnan, M., Shanmugasundaram, T., Gopikrishnan, V., & Jerrine, J. (2020). Bioassay-guided isolation and characterization of metabolites from Actinobacteria. In Protocols in actinobacterial research (pp. 147-163). Springer. https://doi.org/10.1007/978-1-0716-0728-2_8
Barka, E. A., Vatsa, P., Sanchez, L., Gaveau-Vaillant, N., Jacquard, C., Klenk, H. P., Clément, C., Ouhdouch, Y., & van Wezel, G. P. (2016). Taxonomy, physiology, and natural products of actinobacteria. Microbiology and Molecular Biology Reviews, 80(1), 1–43. https://doi.org/10.1128/mmbr.00019-15
Begani, J., Lakhani, J., & Harwani, D. (2018). Current strategies to induce secondary metabolites from microbial biosynthetic cryptic gene clusters. Annals of Microbiology, 68(7), 419–432. https://doi.org/10.1007/s13213-018-1351-1
Belknap, K. C., Park, C. J., Barth, B. M., & Andam, C. P. (2020). Genome mining of biosynthetic and chemotherapeutic gene clusters in Streptomyces bacteria. Scientific Reports, 10(1), Article 2003. https://doi.org/10.1038/s41598-020-58904-9
Breijyeh, Z., Jubeh, B., & Karaman, R. (2020). Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules, 25(6), Article 1340. https://doi.org/10.3390/molecules25061340
Caboche, S. (2014). Bioinformatics bolster a Renaissance. Nature Chemical Biology, 10(10), 798–800. https://doi.org/10.1038/nchembio.1634
CLSI. (2021). M100 Performance Standards for Antimicrobial Susceptibility Testing (31st ed.). Clinical and Laboratory Standards Institute. Wayne, Pennsylvania.
Covington, B. C., Spraggins, J. M., Ynigez-Gutierrez, A. E., Hylton, Z. B., & Bachmann, B. O. (2018). Response of secondary metabolism of hypogean Actinobacterial genera to chemical and biological stimuli. Applied and Environmental Microbiology, 84(19), Article e01125-18. https://doi.org/10.1128/AEM.01125-18
Davies, J., Spiegelman, G., & Yim, G. (2006). The world of subinhibitory antibiotic concentrations. Current Opinion in Microbiology, 9(5), 445-453. https://doi.org/10.1016/j.mib.2006.08.006
Doroghazi, J. R., Albright, J. C., Goering, A. W., Ju, K. S., Haines, R. R., Tchalukov, K. A., Labeda, D. P., Kelleher, N. L., & Metcalf, W. W. (2014). A roadmap for natural product discovery based on large-scale genomics and metabolomics. Nature Chemical Biology, 10(11), 963–968. https://doi.org/10.1038/nchembio.1659
El-Hawary, S. S., Hassan, M. H., Hudhud, A. O., Abdelmohsen, U. R., & Mohammed, R. (2023). Elicitation for activation of the actinomycete genome’s cryptic secondary metabolite gene clusters. RSC Advances, 13(9), 5778-5795. https://doi.org/10.1039/D2RA08222E
Ezeobiora, C. E., Igbokwe, N. H., Amin, D. H., Enwuru, N. V., Okpalanwa, C. F., & Mendie, U. E. (2022). Uncovering the biodiversity and biosynthetic potentials of rare actinomycetes. Future Journal of Pharmaceutical Sciences, 8(1), 1-9. https://doi.org/10.1186/s43094-022-00410-y
Imai, Y., Sato, S., Tanaka, Y., Ochi, K., & Hosaka, T. (2015). Lincomycin at subinhibitory concentrations potentiates secondary metabolite production by Streptomyces spp. Applied and Environmental Microbiology, 81(11), 3869-3879. https://doi.org/10.1128/AEM.04214-14
Janardhan, A., Kumar, A. P., Viswanath, B., Saigopal, D. V., & Narasimha, G. (2014). Production of bioactive compounds by actinomycetes and their antioxidant properties. Biotechnology Research International, 2014, Article 217030. https://doi.org/10.1155/2014/217030
Jiang, Y., Li, Q., Chen, X., & Jiang, C. (2016). Isolation and cultivation methods of actinobacteria. In D. Dhanasekaran & Y. Jiang (Eds.), Actinobacteria - Basics and Biotechnological Applications (pp. 39-58). InTechOpen. https://doi.org/10.5772/61457
Lee, L., Zainal, N., Azman, A., Eng, S., Goh, B., & Yin, W. (2014). Diversity and antimicrobial activities of actinobacteria isolated from tropical mangrove sediments in Malaysia. The Scientific World Journal, 2014, Article 698178. https://doi.org/10.1155/2014/698178
Maier, R. M., & Pepper, I. L. (2015). Bacterial growth. In I. L. Pepper, C. P. Gerbal & T. J. Gentry (Eds.), Environmental Microbiology (3rd ed.; pp. 37–56). Academic Press.
Mazumdar, R., Dutta, P. P., Saikia, J., Borah, J. C., & Thakur, D. (2023). Streptomyces sp. strain PBR11, a forest-derived soil Actinomycetia with antimicrobial potential. Microbiology Spectrum, 11(2), Article e03489-22. https://doi.org/10.1128/spectrum.03489-22
Narayani, M., & Srivastava, S. (2017). Elicitation: A stimulation of stress in in vitro plant cell/tissue cultures for enhancement of secondary metabolite production. Phytochemistry Reviews, 16, 1227-1252. https://doi.org/10.1007/s11101-017-9534-0
Ochi, K. (2017). Insights into microbial cryptic gene activation and strain improvement: Principle, application and technical aspects. The Journal of Antibiotics, 70(1), 25-40. https://doi.org/10.1038/ja.2016.82
Okada, B. K., & Seyedsayamdost, M. R. (2017). Antibiotic dialogues: Induction of silent biosynthetic gene clusters by exogenous small molecules. FEMS Microbiology Reviews, 41(1), 19-33. https://doi.org/10.1093/femsre/fuw035
Quach, N. T., Nguyen, Q. H., Vu, T. H. N., Le, T. T. H., Ta, T. T. T., Nguyen, T. D., Van Doan, T., Van Nguyen, T., Dang, T. T., Nguyen, X. C., Chu, H. H., & Phi, Q. T. (2021). Plant-derived bioactive compounds produced by Streptomyces variabilis LCP18 associated with Litsea cubeba (Lour.) Pers as potential target to combat human pathogenic bacteria and human cancer cell lines. Brazilian Journal of Microbiology, 52(3), 1215–1224. https://doi.org/10.1007/s42770-021-00510-6
Sadiran, S. H. (2011). Bioactive microbial metabolites from Malaysian rainforest soil fungi as a source of new drugs candidates. [Master thesis]. UiTM Press. https://ir.uitm.edu.my/id/eprint/65230/1/65230.pdf
Salwan, R., & Sharma, V. (2020). Molecular and biotechnological aspects of secondary metabolites in actinobacteria. Microbiological Research, 231, Article 126374. https://doi.org/10.1016/j.micres.2019.126374
Shentu, X., Liu, N., Tang, G., Tanaka, Y., Ochi, K., Xu, J., & Yu, X. (2016). Improved antibiotic production and silent gene activation in Streptomyces diastatochromogenes by ribosome engineering. The Journal of Antibiotics, 69(5), 406–410. https://doi.org/10.1038/ja.2015.123
Tanaka, Y., Kasahara, K., Hirose, Y., Morimoto, Y., Izawa, M., & Ochi, K. (2017). Enhancement of butanol production by sequential introduction of mutations conferring butanol tolerance and streptomycin resistance. Journal of Bioscience and Bioenineering, 124(4), 400–407. https://doi.org/10.1016/j.jbiosc.2017.05.003
Tomm, H. A., Ucciferri, L., & Ross, A. C. (2019). Advances in microbial culturing conditions to activate silent biosynthetic gene clusters for novel metabolite production. Journal of Industrial Microbiology and Biotechnology, 46(9–10), 1381–1400. https://doi.org/10.1007/s10295-019-02198-y
Wang, H., Zhao, G., & Ding, X. (2017). Morphology engineering of Streptomyces coelicolor M145 by sub-inhibitory concentrations of antibiotics. Scientific reports, 7(1), Article 13226. https://doi.org/10.1038/s41598-017-13493-y
Yagüe, P., Willemse, J., Xiao, X., Zhang, L., Manteca, A., & van Wezel, G. P. (2022). FtsZ phosphorylation pleiotropically affects Z-ladder formation, antibiotic production, and morphogenesis in Streptomyces coelicolor. Antonie van Leeuwenhoek, 116(1), 1–19. https://doi.org/10.1007/s10482-022-01778-w
Zhang, Y., Huang, H., Xu, S., Wang, B., Ju, J., Tan, H., & Li, W. (2015). Activation and enhancement of fredericamycin A production in deepsea-derived Streptomyces somaliensis SCSIO ZH66 by using ribosome engineering and response surface methodology. Microbial Cell Factories, 14, 1-11. https://doi.org/10.1186/s12934-015-0244-2
Zong, G., Fu, J., Zhang, P., Zhang, W., Xu, Y., Cao, G., & Zhang, R. (2022). Use of elicitors to enhance or activate the antibiotic production in Streptomyces. Critical Reviews in Biotechnology, 42(8), 1260–1283. https://doi.org/10.1080/07388551.2021.1987856
ISSN 1511-3701
e-ISSN 2231-8542