PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Arefi, A., Sturm, B., von Gersdorff, G., Nasirahmadi, A., & Hensel, O. (2021). Vis-NIR hyperspectral imaging along with Gaussian process regression to monitor quality attributes of apple slices during drying. LWT, 152, Article 112297. https://doi.org/10.1016/j.lwt.2021.112297

  • Asaari, M. S. M., Mertens, S., Dhondt, S., Inzé, D., & Scheunders, P. (2022). Analysis of plant stress response using hyperspectral imaging and kernel ridge regression. In N. M. Mahyuddin, N. R. M. Noor & H. A. M. Sakim (Eds.), Proceedings of the 11th Internationl Conference on Robotics, Vision, Signal Processing and Power Application (pp. 426-431). Springer. https://doi.org/10.1007/978-981-16-8129-5_66

  • Asaari, M. S. M., Mertens, S., Dhondt, S., Inzé, D., Wuyts, N., & Scheunders, P. (2019). Analysis of hyperspectral images for detection of drought stress and recovery in maize plants in a high-throughput phenotyping platform. Computers and Electronics in Agriculture, 162, 749-758. https://doi.org/10.1016/j.compag.2019.05.018

  • Asaari, M. S. M., Mishra, P., Mertens, S., Dhondt, S., Inzé, D., Wuyts, N., & Scheunders, P. (2018). Close-range hyperspectral image analysis for the early detection of stress responses in individual plants in a high-throughput phenotyping platform. ISPRS Journal of Photogrammetry and Remote Sensing, 138, 121-138. https://doi.org/10.1016/j.isprsjprs.2018.02.003

  • Bauriegel, E., Giebel, A., Geyer, M., Schmidt, U., & Herppich, W. B. (2011). Early detection of Fusarium infection in wheat using hyper-spectral imaging. Computers and Electronics in Agriculture, 75(2), 304-312. https://doi.org/10.1016/j.compag.2010.12.006

  • Behmann, J., Mahlein, A. K., Paulus, S., Dupuis, J., Kuhlmann, H., Oerke, E. C., & Plümer, L. (2016). Generation and application of hyperspectral 3D plant models: Methods and challenges. Machine Vision and Applications, 27(5), 611-624. https://doi.org/10.1007/s00138-015-0716-8

  • Behmann, J., Steinrücken, J., & Plümer, L. (2014). Detection of early plant stress responses in hyperspectral images. ISPRS Journal of Photogrammetry and Remote Sensing, 93, 98-111. https://doi.org/10.1016/j.isprsjprs.2014.03.016

  • Bradley, P. E., Keller, S., & Weinmann, M. (2018). Unsupervised feature selection based on ultrametricity and sparse training data: A case study for the classification of high-dimensional hyperspectral data. Remote Sensing, 10(10), Article 1564. https://doi.org/10.3390/rs10101564

  • Brownson, J. R. S. (2014). Solar Energy Conversion Systems. Elsevier Inc. https://doi.org/https://doi.org/10.1016/C2011-0-07039-4

  • Chen, B., Shi, S., Sun, J., Gong, W., Yang, J., Du, L., Guo, K., Wang, B., & Chen, B. (2019). Hyperspectral lidar point cloud segmentation based on geometric and spectral information. Optics Express, 27(17), 24043-24059. https://doi.org/10.1364/oe.27.024043

  • Darvishzadeh, R., Skidmore, A., Schlerf, M., Atzberger, C., Corsi, F., & Cho, M. (2008). LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements. ISPRS Journal of Photogrammetry and Remote Sensing, 63(4), 409-426. https://doi.org/10.1016/j.isprsjprs.2008.01.001

  • Dinç, S., & Aygün, R. S. (2013). Evaluation of hyperspectral image classification using random forest and Fukunaga-Koontz transform. In P. Perner (Ed.), Machine Learning and Data Mining in Pattern Recognition (pp. 234-245). Springer. https://doi.org/10.1007/978-3-642-39712-7_18

  • Elmasry, G., Kamruzzaman, M., Sun, D. W., & Allen, P. (2012). Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: A review. Critical Reviews in Food Science and Nutrition, 52(11), 999-1023. https://doi.org/10.1080/10408398.2010.543495

  • Fischler, M. A., & Bolles, R. C. (1987). Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. In M. A. Fischler & O. Firschein (Eds.), Readings in Computer Vision (pp. 726-740). Morgan Kaufmann Publishers, Inc. https://doi.org/10.1016/b978-0-08-051581-6.50070-2

  • Fletcher, R. S., & Turley, R. B. (2017). Employing canopy hyperspectral narrowband data and random forest algorithm to differentiate palmer amaranth from colored cotton. American Journal of Plant Sciences, 08(12), 3258-3271. https://doi.org/10.4236/ajps.2017.812219

  • Fu, Y., Yang, G., Wang, J., Song, X., & Feng, H. (2014). Winter wheat biomass estimation based on spectral indices, band depth analysis and partial least squares regression using hyperspectral measurements. Computers and Electronics in Agriculture, 100, 51-59. https://doi.org/10.1016/j.compag.2013.10.010

  • Gao, J., Nuyttens, D., Lootens, P., He, Y., & Pieters, J. G. (2018). Recognising weeds in a maize crop using a random forest machine-learning algorithm and near-infrared snapshot mosaic hyperspectral imagery. Biosystems Engineering, 170, 39-50. https://doi.org/10.1016/j.biosystemseng.2018.03.006

  • Ge, Y., Bai, G., Stoerger, V., & Schnable, J. C. (2016). Temporal dynamics of maize plant growth, water use, and leaf water content using automated high throughput RGB and hyperspectral imaging. Computers and Electronics in Agriculture, 127, 625-632. https://doi.org/10.1016/j.compag.2016.07.028

  • Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: A tutorial. Analytica Chimica Acta, 185, 1-17. https://doi.org/10.1016/0003-2670(86)80028-9

  • Gewali, U. B., & Monteiro, S. T. (2016, September 25-28). A novel covariance function for predicting vegetation biochemistry from hyperspectral imagery with Gaussian processes. [Paper presentation]. International Conference on Image Processing (ICIP), Arizona, USA. https://doi.org/10.1109/ICIP.2016.7532752

  • Gewali, U. B., Monteiro, S. T., & Saber, E. (2019). Gaussian processes for vegetation parameter estimation from hyperspectral data with limited ground truth. Remote Sensing, 11(13), Article 1614. https://doi.org/10.3390/rs11131614

  • Goetz, A. F. H. (2009). Three decades of hyperspectral remote sensing of the Earth: A personal view. Remote Sensing of Environment, 113(SUPPL. 1), S5-S16. https://doi.org/10.1016/j.rse.2007.12.014

  • Gonzalez, R. C., & Woods, R. E. (1993). Digital Image Processing (3rd ed.). Pearson.

  • Grönwall, C., Steinvall, O., Göhler, B., & Hamoir, D. (2016). Active and passive imaging of clothes in the NIR and SWIR regions for reflectivity analysis. Applied Optics, 55(20), Article 5292. https://doi.org/10.1364/ao.55.005292

  • Guo, Y., Yin, X., Zhao, X., Yang, D., & Bai, Y. (2019). Hyperspectral image classification with SVM and guided filter. Eurasip Journal on Wireless Communications and Networking, 2019(1), 1-9. https://doi.org/10.1186/s13638-019-1346-z

  • Gupta, N., Dahmanja, R., Gottliebb, M., Denes, L., Kaminsky, B., & Metes, P. (1999). Hyperspectral imaging using acousto-optic tunable filters. Proceedings AEROSENSE, 3718, 512-521. https://doi.org/10.1117/12.359988

  • Huang, J. F., & Apan, A. (2006). Detection of sclerotinia rot disease on celery using hyperspectral data and partial least squares regression. Journal of Spatial Science, 51(2), 129-142. https://doi.org/10.1080/14498596.2006.9635087

  • Huang, P., Luo, X., Jin, J., Wang, L., Zhang, L., Liu, J., & Zhang, Z. (2018). Improving high-throughput phenotyping using fusion of close-range hyperspectral camera and low-cost depth sensor. Sensors, 18(8), Article 2711. https://doi.org/10.3390/s18082711

  • Huang, Y., Li, J., Yang, R., Wang, F., Li, Y., Zhang, S., Wan, F., Qiao, X., & Qian, W. (2021). Hyperspectral imaging for identification of an invasive plant mikania micrantha kunth. Frontiers in Plant Science, 12, Article 626516. https://doi.org/10.3389/fpls.2021.626516

  • Ioffe, S., & Szegedy, C. (2015, July 6-11). Batch normalization: Accelerating deep network training by reducing internal covariate shift. [Paper presentation]. 32nd International Conference on Machine Learning (ICML), Lille, France.

  • Khodadadzadeh, M., Li, J., Plaza, A., Ghassemian, H., Bioucas-Dias, J. M., & Li, X. (2014). Spectral-spatial classification of hyperspectral data using local and global probabilities for mixed pixel characterization. IEEE Transactions on Geoscience and Remote Sensing, 52(10), 6298-6314. https://doi.org/10.1109/TGRS.2013.2296031

  • Kool, J., Been, T., & Evenhuis, A. (2021, March 24-26). Detection of latent potato late blight by hyperspectral imaging. [Paper presentation]. 11th Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing, Amsterdam, Netherlands. https://doi.org/10.1109/WHISPERS52202.2021.9484002

  • Kuska, M., Wahabzada, M., Leucker, M., Dehne, H. W., Kersting, K., Oerke, E. C., Steiner, U., & Mahlein, A. K. (2015). Hyperspectral phenotyping on the microscopic scale: Towards automated characterization of plant-pathogen interactions. Plant Methods, 11(1), Article 28. https://doi.org/10.1186/s13007-015-0073-7

  • Leucker, M., Mahlein, A. K., Steiner, U., & Oerke, E. C. (2016). Improvement of lesion phenotyping in cercospora beticolasugar beet interaction by hyperspectral imaging. Phytopathology, 106(2), 177-184. https://doi.org/10.1094/PHYTO-04-15-0100-R

  • Li, L., Zhang, Q., & Huang, D. (2014). A review of imaging techniques for plant phenotyping. Sensors, 14(11), 20078-20111. https://doi.org/10.3390/s141120078

  • Liao, W., Ochoa, D., Gao, L., Zhang, B., & Philips, W. (2019, July 29- August 2). Morphological analysis for banana disease detection in close range hyperspectral remote sensing images. [Paper presentation]. IEEE International Symposium on Geoscience and Remote Sensing (IGARSS), Yokohama, Japan. https://doi.org/10.1109/IGARSS.2019.8899087

  • Liu, Z. Y., Huang, J. F., Shi, J. J., Tao, R. X., Zhou, W., & Zhang, L. L. (2007). Characterizing and estimating rice brown spot disease severity using stepwise regression, principal component regression and partial least-square regression. Journal of Zhejiang University Science B, 8(10), 738-744. https://doi.org/10.1631/jzus.2007.B0738

  • Lu, B., Dao, P. D., Liu, J., He, Y., & Shang, J. (2020). Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sensing, 12(16), 1-44. https://doi.org/10.3390/RS12162659

  • Luo, G., Chen, G., Tian, L., Qin, K., & Qian, S. E. (2016). Minimum noise fraction versus principal component analysis as a preprocessing step for hyperspectral imagery denoising. Canadian Journal of Remote Sensing, 42(2), 106-116. https://doi.org/10.1080/07038992.2016.1160772

  • Mahlein, A. K., Steiner, U., Dehne, H. W., & Oerke, E. C. (2010). Spectral signatures of sugar beet leaves for the detection and differentiation of diseases. Precision Agriculture, 11(4), 413-431. https://doi.org/10.1007/s11119-010-9180-7

  • Manley, M., Williams, P., Nilsson, D., & Geladi, P. (2009). Near infrared hyperspectral imaging for the evaluation of endosperm texture in whole yellow maize (Zea maize L.) Kernels. Journal of Agricultural and Food Chemistry, 57(19), 8761-8769. https://doi.org/10.1021/jf9018323

  • Mateo-García, G., Laparra, V., & Gómez-Chova, L. (2018, July 22-27). Optimizing kernel ridge regression for remote sensing problems. [Paper presentation]. IEEE International Symposium on Geoscience and Remote Sensing (IGARSS), Velencia, Spain. https://doi.org/10.1109/IGARSS.2018.8518016

  • Mishra, P., Lohumi, S., Ahmad Khan, H., & Nordon, A. (2020). Close-range hyperspectral imaging of whole plants for digital phenotyping: Recent applications and illumination correction approaches. Computers and Electronics in Agriculture, 178, Article 105780. https://doi.org/10.1016/j.compag.2020.105780

  • Mishra, P., Polder, G., Gowen, A., Rutledge, D. N., & Roger, J. M. (2020). Utilising variable sorting for normalisation to correct illumination effects in close-range spectral images of potato plants. Biosystems Engineering, 197, 318-323. https://doi.org/10.1016/j.biosystemseng.2020.07.010

  • Moshou, D., Pantazi, X. E., Kateris, D., & Gravalos, I. (2014). Water stress detection based on optical multisensor fusion with a least squares support vector machine classifier. Biosystems Engineering, 117(1), 15–22. https://doi.org/10.1016/j.biosystemseng.2013.07.008

  • Moughal, T. A. (2013). Hyperspectral image classification using support vector machine. Journal of Physics: Conference Series, 439(1), Article 012042. https://doi.org/10.1088/1742-6596/439/1/012042

  • Nagasubramanian, K., Jones, S., Singh, A. K., Sarkar, S., Singh, A., & Ganapathysubramanian, B. (2019). Plant disease identification using explainable 3D deep learning on hyperspectral images. Plant Methods, 15(1), 1-10. https://doi.org/10.1186/s13007-019-0479-8

  • Nguyen, C., Sagan, V., Maimaitiyiming, M., Maimaitijiang, M., Bhadra, S., & Kwasniewski, M. T. (2021). Early detection of plant viral disease using hyperspectral imaging and deep learning. Sensors, 21(3), Article 742. https://doi.org/10.3390/s21030742

  • Nguyen, H. T., & Lee, B. (2006). Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression. European Journal of Agronomy, 24(4), 349-356. https://doi.org/10.1016/j.eja.2006.01.001

  • Nielsen, A. A. (2011). Kernel maximum autocorrelation factor and minimum noise fraction transformations. IEEE Transactions on Image Processing, 20(3), 612-624. https://doi.org/10.1109/TIP.2010.2076296

  • Pandey, P., Ge, Y., Stoerger, V., & Schnable, J. C. (2017). High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging. Frontiers in Plant Science, 8(1348), 1-12. https://doi.org/10.3389/fpls.2017.01348

  • Paoletti, M. E., Haut, J. M., Plaza, J., & Plaza, A. (2018). A new deep convolutional neural network for fast hyperspectral image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 145(Part A), 120-147. https://doi.org/10.1016/j.isprsjprs.2017.11.021

  • Paulus, S., & Mahlein, A. K. (2020). Technical workflows for hyperspectral plant image assessment and processing on the greenhouse and laboratory scale. GigaScience, 9(8), 1-10. https://doi.org/10.1093/gigascience/giaa090

  • Qin, J., Burks, T. F., Ritenour, M. A., & Bonn, W. G. (2009). Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence. Journal of Food Engineering, 93(2), 183-191. https://doi.org/10.1016/j.jfoodeng.2009.01.014

  • Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield trends are insufficient to double global crop production by 2050. PloS One, 8(6), Article e66428. https://doi.org/10.1371/journal.pone.0066428

  • Ren, G., Wang, Y., Ning, J., & Zhang, Z. (2020). Using near-infrared hyperspectral imaging with multiple decision tree methods to delineate black tea quality. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 237, Article 118407. https://doi.org/10.1016/j.saa.2020.118407

  • Rodarmel, C., & Shan, J. (2002). Principal component analysis for hyperspectral image classification. Surveying and Land Information Science, 62(2), 115-122.

  • Romer, C., Wahabzada M., Ballvora A., Pinto, F., Rossini, M., Panigada, C., Behmann, J., Leon, J., Thurau, C., Bauckhage, C., Kersting, K., Rascher, U., & Plumer, L. (2012). Early drought stress detection in cereals: Simplex volume maximisation for hyperspectral image analysis. Functional Plant Biology, 39(11), 878-890. https://doi.org/10.1071/FP12060

  • Rumpf, T., Mahlein, A. K., Steiner, U., Oerke, E. C., Dehne, H. W., & Plümer, L. (2010). Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance. Computers and Electronics in Agriculture, 74(1), 91-99. https://doi.org/10.1016/j.compag.2010.06.009

  • Sabzi, S., Pourdarbani, R., Rohban, M. H., García-Mateos, G., Paliwal, J., & Molina-Martínez, J. M. (2021). Early detection of excess nitrogen consumption in cucumber plants using hyperspectral imaging based on hybrid neural networks and the imperialist competitive algorithm. Agronomy, 11(3), Article 575. https://doi.org/10.3390/agronomy11030575

  • Saha, D., & Manickavasagan, A. (2021). Machine learning techniques for analysis of hyperspectral images to determine quality of food products: A review. Current Research in Food Science, 4, 28-44. https://doi.org/10.1016/j.crfs.2021.01.002

  • Salazar-vazquez, J., & Mendez-vazquez, A. (2020). HardwareX A plug-and-play Hyperspectral Imaging Sensor using low-cost equipment. HardwareX, 7, Article e00087. https://doi.org/10.1016/j.ohx.2019.e00087

  • Sankaran, S., Ehsani, R., Inch, S. A., & Ploetz, R. C. (2012). Evaluation of visible-near infrared reflectance spectra of avocado leaves as a non-destructive sensing tool for detection of laurel wilt. Plant Disease, 96(11), 1683-1689. https://doi.org/10.1094/PDIS-01-12-0030-RE

  • Schlerf, M., Atzberger, C., Udelhoven, T., Jarmer, T., Mader, S., Werner, W., & Hill, J. (2003, May 13-16). Spectrometric estimation of leaf pigments in Norway spruce needles using band-depth analysis, partial least-square regression and inversion of a conifer leaf model. [Paper presentation]. 3rd EARSeL Workshop on Imaging Spectroscopy, Herrsching, Germany.

  • Sims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81(2-3), 337-354. https://doi.org/10.1016/S0034-4257(02)00010-X

  • Sims, D. A., & Gamon, J. A. (2003). Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance: a comparison of indices based on liquid water and chlorophyll absorption features. Remote Sensing of Environment, 84(4), 526-537. https://doi.org/10.1016/S0034-4257(02)00151-7

  • Stuart, M. B., McGonigle, A. J. S., & Willmott, J. R. (2019). Hyperspectral imaging in environmental monitoring: A review of recent developments and technological advances in compact field deployable systems. Sensors, 19(14), Article 3071. https://doi.org/10.3390/s19143071

  • Sun, G., Ding, Y., Wang, X., Lu, W., Sun, Y., & Yu, H. (2019). Nondestructive determination of nitrogen, phosphorus and potassium contents in greenhouse tomato plants based on multispectral three-dimensional imaging. Sensors, 19(23), Article 5295. https://doi.org/10.3390/s19235295

  • Sun, H., Liu, N., Wu, L., Chen, L., Yang, L., Li, M., & Zhang, Q. (2018). Water content detection of potato leaves based on hyperspectral image. IFAC-PapersOnLine, 51(17), 443-448. https://doi.org/10.1016/j.ifacol.2018.08.179

  • Sun, J., Yang, W., Zhang, M., Feng, M., Xiao, L., & Ding, G. (2021). Estimation of water content in corn leaves using hyperspectral data based on fractional order Savitzky-Golay derivation coupled with wavelength selection. Computers and Electronics in Agriculture, 182, Article 105989. https://doi.org/10.1016/j.compag.2021.105989

  • Tian, Y., & Zhang, L. (2012). Study on the methods of detecting cucumber downy mildew using hyperspectral imaging technology. Physics Procedia, 33, 743-750. https://doi.org/10.1016/j.phpro.2012.05.130

  • Vigneau, N., Ecarnot, M., Rabatel, G., & Roumet, P. (2011). Potential of field hyperspectral imaging as a non destructive method to assess leaf nitrogen content in Wheat. Field Crops Research, 122(1), 25-31. https://doi.org/10.1016/j.fcr.2011.02.003

  • Villegas, G., Liao, W., Criollo, R., Philips, W., & Ochoa, D. (2017). Detection of leaf structures in close-range hyperspectral images using morphological fusion. Geo-Spatial Information Science, 20(4), 325-332. https://doi.org/10.1080/10095020.2017.1399673

  • Wang, H., Chen, J., Lin, H., & Yuan, D. (2010). Research on effectiveness of hyperspectral data on identifying rice of different genotypes. Remote Sensing Letters, 1(4), 223-229. https://doi.org/10.1080/01431161.2010.481680

  • Wang, X., Zhang, Y., Ma, X., Xu, T., & Arce, G. R. (2018). Compressive spectral imaging system based on liquid crystal tunable filter. Optics Express, 26(19), Article 25226. https://doi.org/10.1364/oe.26.025226

  • Wang, Z., Hu, M., & Zhai, G. (2018). Application of deep learning architectures for accurate and rapid detection of internal mechanical damage of blueberry using hyperspectral transmittance data. Sensors, 18(4), Article 1126. https://doi.org/10.3390/s18041126

  • Williams, D., Britten, A., McCallum, S., Jones, H., Aitkenhead, M., Karley, A., Loades, K., Prashar, A., & Graham, J. (2017). A method for automatic segmentation and splitting of hyperspectral images of raspberry plants collected in field conditions. Plant Methods, 13(1), 1-12. https://doi.org/10.1186/s13007-017-0226-y

  • Yan, T., Xu, W., Lin, J., Duan, L., Gao, P., Zhang, C., & Lv, X. (2021). Combining multi-dimensional Convolutional Neural Network (CNN) with visualization method for detection of aphis gossypii glover infection in cotton leaves using hyperspectral imaging. Frontiers in Plant Science, 12, Article 604510. https://doi.org/10.3389/fpls.2021.604510

  • Yang, W., Yang, C., Hao, Z., Xie, C., & Li, M. (2019). Diagnosis of plant cold damage based on hyperspectral imaging and convolutional neural network. IEEE Access, 7, 118239-118248. https://doi.org/10.1109/ACCESS.2019.2936892

  • Yuan, L., Huang, Y., Loraamm, R. W., Nie, C., Wang, J., & Zhang, J. (2014). Spectral analysis of winter wheat leaves for detection and differentiation of diseases and insects. Field Crops Research, 156, 199-207. https://doi.org/10.1016/j.fcr.2013.11.012

  • Zhang, F., & Zhou, G. (2019). Estimation of vegetation water content using hyperspectral vegetation indices: A comparison of crop water indicators in response to water stress treatments for summer maize. BMC Ecology, 19(1), 1-12. https://doi.org/10.1186/s12898-019-0233-0

  • Zhang, J. C., Pu, R. L., Wang, J. H., Huang, W. J., Yuan, L., & Luo, J. H. (2012). Detecting powdery mildew of winter wheat using leaf level hyperspectral measurements. Computers and Electronics in Agriculture, 85, 13-23. https://doi.org/10.1016/j.compag.2012.03.006

  • Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Huang, M., Yao, Y., Bassu, S., Ciais, P., Durand, J. L., Elliott, J., Ewert, F., Janssens, I. A., Li, T., Lin, E., Liu, Q., Martre, P., Müller, C., … & Asseng, S. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America, 114(35), 9326-9331. https://doi.org/10.1073/pnas.1701762114

  • Zhao, J., Pn, F., Li, Z., Lan, Y., Lu, L., Yang, D., & Wen, Y. (2021). Detection of cotton waterlogging stress based on hyperspectral images and convolutional neural network. International Journal of Agricultural and Biological Engineering, 14(2), 167-174. https://doi.org/10.25165/J.IJABE.20211402.6023 

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

J

Download Full Article PDF

Share this article

Recent Articles