PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 31 (4) Jul. 2023 / JST-3690-2022

 

Comparison of Count Data Generalised Linear Models: Application to Air-Pollution Related Disease in Johor Bahru, Malaysia

Zetty Izzati Zulki Alwani, Adriana Irawati Nur Ibrahim, Rossita Mohamad Yunus and Fadhilah Yusof

Pertanika Journal of Tropical Agricultural Science, Volume 31, Issue 4, July 2023

DOI: https://doi.org/10.47836/pjst.31.4.16

Keywords: Air pollution disease, count data, generalised linear model

Published on: 3 July 2023

Poisson regression is a common approach for modelling discrete data. However, due to characteristics of Poisson distribution, Poisson regression might not be suitable since most data are over-dispersed or under-dispersed. This study compared four generalised linear models (GLMs): negative binomial, generalised Poisson, zero-truncated Poisson and zero-truncated negative binomial. An air-pollution-related disease, upper respiratory tract infection (URTI), and its relationship with various air pollution and climate factors were investigated. The data were obtained from Johor Bahru, Malaysia, from January 1, 2012, to December 31, 2013. Multicollinearity between the covariates and the independent variables was examined, and model selection was performed to find the significant variables for each model. This study showed that the negative binomial is the best model to determine the association between the number of URTI cases and air pollution and climate factors. Particulate Matter (PM10), Sulphur Dioxide (SO2) and Ground Level Ozone (GLO) are the air pollution factors that affect this disease significantly. However, climate factors do not significantly influence the number of URTI cases. The model constructed in this study can be utilised as an early warning system to prevent and mitigate URTI cases. The involved parties, such as the local authorities and hospitals, can also employ the model when facing the risk of URTI cases that may occur due to air pollution factors.

  • Agresti, A. (2003). Categorical Data Analysis. John Wiley & Sons.

  • Alwani, Z. Z., Ibrahim, A. I. N., Yunus, R. M., & Yusof, F. (2021). Application of zero-truncated count data regression models to air-pollution disease. Journal of Physics: Conference Series, 1988(1), Article 012096. https://doi.org/10.1088/1742-6596/1988/1/012096

  • Amâncio, C. T., & Nascimento, L. F. (2012). Asthma and ambient pollutants: A time series study. Revista da Associacao Medica Brasileira, 58(3), 302-307. https://doi.org/10.1590/S0104-42302012000300009

  • Avcı, E. (2018). Using count regression models to determine the factors which affects the hospitalization number of people with schizophrenia. Journal of Data Science, 16(3), 511-530. https://doi.org/10.6339/JDS.201807_16(3).0004

  • Cameron, A. C., & Trivedi, P. K. (2013). Regression Analysis of Count Data (Vol. 53). Cambridge University Press.

  • Çapraz, Ö., & Deniz, A. (2021). Assessment of hospitalizations from asthma, chronic obstructive pulmonary disease and acute bronchitis in relation to air pollution in İstanbul, Turkey. Sustainable Cities and Society, 72, Article 103040. https://doi.org/10.1016/j.scs.2021.103040

  • Consul, P. C., & Jain, G. C. (1973). A generalization of the Poisson distribution. Technometrics, 15(4), 791-799. https://doi.org/10.1080/00401706.1973.10489112

  • Consul, P., & Famoye, F. (1992). Generalized Poisson regression model. Communications in Statistics-Theory and Methods, 21(1), 89-109. https://doi.org/10.1080/03610929208830766

  • D’Agostino, R. B., & Pearson, E. S. (1973). Tests for Departure from Normality. Biometrika, 60, 613-622. https://doi.org/10.2307/2335012

  • Darrow, L. A., Klein, M., Flanders, W. D., Mulholland, J. A., Tolbert, P. E., & Strickland, M. J. (2014). Air pollution and acute respiratory infections among children 0-4 years of age: An 18-year time-series study. American Journal of Epidemiology, 180(10), 968-977. https://doi.org/10.1093/aje/kwu234

  • Famoye, F., Wulu, J. T., & Singh, K. P. (2004). On the generalized Poisson regression model with an application to accident data. Journal of Data Science, 2(3), 287-295. https://doi.org/10.6339/JDS.2004.02(3).167

  • Grogger, J. T., & Carson, R. T. (1991). Models for truncated counts. Journal of Applied Econometrics, 6(3), 225-238. https://doi.org/10.1002/jae.3950060302

  • Jamaludin, A. R. B., Yusof, F., Lokoman, R. M., Noor, Z. Z., Alias, N., & Aris, N. M. (2017). Correlational study of air pollution-related diseases (asthma, conjunctivitis, URTI and dengue) in Johor Bahru, Malaysia. Malaysian Journal of Fundamental and Applied Sciences, 13, 354-361. https://doi.org/10.11113/mjfas.v13n4-1.897

  • Li, Y. R., Xiao, C. C., Li, J., Tang, J., Geng, X. Y., Cui, L. J., & Zhai, J. X. (2018). Association between air pollution and upper respiratory tract infection in hospital outpatients aged 0-14 years in Hefei, China: A time series study. Public Health, 156, 92-100. https://doi.org/10.1016/j.puhe.2017.12.006

  • Liu, Y., Guo, Y., Wang, C., Li, W., Lu, J., & Shen, S. (2015). Association between temperature change and outpatient visits for respiratory tract infections among children in Guangzhou, China. International Journal of Environmental Research and Public Health, 12, 439-454. https://doi.org/10.3390/ijerph120100439

  • Mäkinen, T. M., Juvonen, R., Jokelainen, J., Harju, T. H., Peitso, A., Bloigu, A., Silvennoinen-Kassinen, S., Leinonen, M., & Hassi, J. (2009). Cold temperature and low humidity are associated with increased occurrence of respiratory tract infections. Respiratory Medicine, 103(3), 456-462. https://doi.org/10.1016/j.rmed.2008.09.011

  • Martínez-Espiñeira, R., & Amoako-Tuffour, J. (2008). Recreation demand analysis under truncation, overdispersion, and endogenous stratification: An application to Gros Morne National Park. Journal of Environmental Management, 88(4), 1320-1332. https://doi.org/10.1016/j.jenvman.2007.07.006.

  • Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to Linear Regression Analysis. John Wiley & Sons.

  • Nelder, J. A., & Wedderburn, R. W. (1972). Generalized linear models. Journal of the Royal Statistical Society: Series A (General), 135(3), 370-384. https://doi.org/10.2307/2344614

  • Saffari, S. E., Adnan, R., & Greene, W. (2011). Handling of over-dispersion of count data via truncation using poisson regression model. Journal of Computer Science and Computational Mathematics, 1(1), 1-4. https://doi.org/10.20967/jcscm.2011.01.001

  • Saldiva, P. H., Lichtenfels, A. J. F. C., Paiva, P. S. O., Barone, I. A., Martins, M. A., Massad, E., Pereira, J. C. R., Xavier, V. P., Singer, J. M., & Bohm, G. M. (1994). Association between air pollution and mortality due to respiratory diseases in children in São Paulo, Brazil: A preliminary report. Environmental Research, 65(2), 218-225. https://doi.org/10.1006/enrs.1994.1033

  • Shapiro S. S., Wilk M. B., & Chen V. (1968). A comparative study of various tests for normality. Journal of American Statistical Association, 63, 1343-1372. https://doi.org/10.2307/2285889

  • Szyszkowicz, M., Kousha, T., Castner, J., & Dales, R. (2018). Air pollution and emergency department visits for respiratory diseases: A multi-city case crossover study. Environmental Research, 163, 263-269. https://doi.org/10.1016/j.envres.2018.01.043

  • Tam, W. W., Wong, T. W., Ng, L., Wong, S. Y., Kung, K. K., & Wong, A. H. (2014). Association between air pollution and general outpatient clinic consultations for upper respiratory tract infections in Hong Kong. PLoS One, 9(1), Article e86913. https://doi.org/10.1371/journal.pone.0086913

  • Tao, Y., Mi, S., Zhou, S., Wang, S., & Xie, X. (2014). Air pollution and hospital admissions for respiratory diseases in Lanzhou, China. Environmental Pollution, 185, 196-201. https://doi.org/10.1016/j.envpol.2013.10.035

  • Thomas, M., & Bomar, P. A. (2021). Upper Respiratory Tract Infection. StatPearls Publishing.

  • Wang, W., & Famoye, F. (1997). Modeling household fertility decisions with generalized Poisson regression. Journal of Population Economics, 10(3), 273-283. https://doi.org/10.1007/s001480050043

  • Wong, T. W., Tam, W., Yu, I. T. S., Wun, Y. T., Wong, A. H., & Wong, C. M. (2006). Association between air pollution and general practitioner visits for respiratory diseases in Hong Kong. Thorax, 61(7), 585-591. http://dx.doi.org/10.1136/thx.2005.051730

  • Wuertz, D., & Katzgraber, H. G. (2005). Precise Finite-Sample Quantiles of the Jarque-Bera Adjusted Lagrange Multiplier Test. ETHZ Preprint.

  • Yee T. W. (2021). VGAM: Vector generalized linear and additive models R package version 1.1-5. https://CRAN.R-project.org/package=VGAM

  • Zhang, D., Tian, Y., Zhang, Y., Cao, Y., Wang, Q., & Hu, Y. (2019). Fine particulate air pollution and hospital utilization for upper respiratory tract infections in Beijing, China. International Journal of Environmental Research and Public Health, 16(4), Article 533. https://doi.org/10.3390/ijerph16040533

  • Zhang, F., Zhang, H., Wu, C., Zhang, M., Feng, H., Li, D., & Zhu, W. (2021). Acute effects of ambient air pollution on clinic visits of college students for upper respiratory tract infection in Wuhan, China. Environmental Science and Pollution Research, 28(23), 29820-29830. https://doi.org/10.1007/s11356-021-12828-7

  • Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., & Smith, G. M. (2009). GLM and GAM for count data. In Mixed Effects Models and Extensions in Ecology with R (pp. 209-243). Springer. https://doi.org/10.1007/978-0-387-87458-6_9

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JST-3690-2022

Download Full Article PDF

Share this article

Related Articles