e-ISSN 2231-8542
ISSN 1511-3701
Hasanudin Hasanudin, Wan Ryan Asri, Firda Rahmania Putri, Fahma Riyanti, Zainal Fanani, Addy Rachmat, Novia Novia and Tuty Emilia Agustina
Pertanika Journal of Tropical Agricultural Science, Volume 31, Issue 2, March 2023
DOI: https://doi.org/10.47836/pjst.31.2.08
Keywords: Biodiesel blends, free fatty acid conversion, montmorillonite, optimization, sulfonated carbon, waste cooking oil
Published on: 20 March 2023
This research, biodiesel production from waste cooking oil (WCO), was conducted using a montmorillonite-sulfonated carbon catalyst from molasses. The biodiesel product would be blended with diesel fuel with various volume variations to see its fuel properties. The catalyst was assessed by Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), N2 adsorption-desorption isotherm, and acidity analysis using the titration method. The effect of the weight ratio of montmorillonite to sulfonated carbon was also evaluated. The process of esterification reaction was optimized using the response surface methodology with a central composite design (RSM-CCD). The study showed that the weight ratio of montmorillonite to sulfonated carbon of 1:3 generated the highest acidity of 9.79 mmol/g with a prominent enhanced surface area and was further employed to optimize the esterification reaction. The optimum condition was obtained at a reaction temperature of 78.12°C, catalyst weight of 2.98 g, and reaction time of 118.27 with an FFA conversion of 74.101%. The optimum condition for the mixture of FAME and diesel fuel was achieved at the composition of the B20 blend, which met the FAME standard. The reusability study revealed that the catalyst had adequate stability at three consecutive runs, with a reduced performance was 18.60%. The reduction of FFA conversion was due to the leaching of the catalyst’s active site. This study disclosed that the FAME generated from the esterification of FFA on WCO-catalyzed montmorillonite-sulfonated carbon had a promising option as biodiesel blends for increasing the quality of commercial diesel.
Abdelhady, H. H., Elazab, H. A., Ewais, E. M., Saber, M., & El-Deab, M. S. (2020). Efficient catalytic production of biodiesel using nano-sized sugar beet agro-industrial waste. Fuel, 261, Article 116481. https://doi.org/10.1016/j.fuel.2019.116481
Akram, S., Mumtaz, M. W., Danish, M., Mukhtar, H., Irfan, A., Raza, S. A., Wang, Z., & Arshad, M. (2019). Impact of cerium oxide and cerium composite oxide as nano additives on the gaseous exhaust emission profile of waste cooking oil based biodiesel at full engine load conditions. Renewable Energy, 143, 898-905. https://doi.org/10.1016/j.renene.2019.05.025
Ali, C. H., Asif, A. H., Iqbal, T., Qureshi, A. S., Kazmi, M. A., Yasin, S., Danish, M., & Mu, B. Z. (2018). Improved transesterification of waste cooking oil into biodiesel using calcined goat bone as a catalyst. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 40(9), 1076-1083. https://doi.org/10.1080/15567036.2018.1469691
Almadani, E. A., Harun, F. W., Radzi, S. M., & Muhamad, S. K. (2018). Cu2+ montmorillonite K10 clay catalyst as a green catalyst for production of stearic acid methyl ester: Optimization using response surface methodology (RSM). Bulletin of Chemical Reaction Engineering & Catalysis, 13(1), 187-195. https://doi.org/10.9767/bcrec.13.1.1397.187-195
Al-Sakkari, E. G., Abdeldayem, O. M., El-Sheltawy, S. T., Abadir, M. F., Soliman, A., Rene, E. R., & Ismail, I. (2020). Esterification of high FFA content waste cooking oil through different techniques including the utilization of cement kiln dust as a heterogeneous catalyst: A comparative study. Fuel, 279, Article 118519. https://doi.org/10.1016/j.fuel.2020.118519
Alshabanat, M., Al-Arrash, A., & Mekhamer, W. (2013). Polystyrene/montmorillonite nanocomposites: Study of the morphology and effects of sonication time on thermal stability. Journal of Nanomaterials, 2013, Article 650725. https://doi.org/10.1155/2013/650725
Amaya, J., Suarez, N., Moreno, A., Moreno, S., & Molina, R. (2020). Mo or W catalysts promoted with Ni or Co supported on modified bentonite for decane hydroconversion. New Journal of Chemistry, 44(7), 2966-2979. https://doi.org/10.1039/c9nj04878b
Anguebes-Franseschi, F., Abatal, M., Bassam, A., Soberanis, M. A. E., Tzuc, O. M., Bucio-Galindo, L., Quiroz, A. V. C., Ucan, C. A. A., & Ramirez-Elias, M. A. (2018). Esterification optimization of crude African palm olein using response surface methodology and heterogeneous acid catalysis. Energies, 11(1), Article 157. https://doi.org/10.3390/en11010157
Azman, N. S., Marliza, T. S., Asikin-Mijan, N., Hin, T. Y. Y., & Khairuddin, N. (2021). Production of biodiesel from waste cooking oil via deoxygenation using Ni-Mo/Ac catalyst. Processes, 9(5), Article 750. https://doi.org/10.3390/pr9050750
Bahú, J., Hernandez, N., Bonon, A., Bonon, A. D. J., Mart, M., & Gregorio, J. (2017). Epoxy monomers obtained from castor oil using a toxicity-free catalytic system Related papers. Journal of Molecular Catalysis A: Chemical, 426, 550-556.
Balajii, M., & Niju, S. (2021). Esterification optimization of underutilized Ceiba pentandra oil using response surface methodology. Biofuels, 12(5), 495-502. https://doi.org/10.1080/17597269.2018.1496384
Banerjee, S., Sahani, S., & Sharma, Y. C. (2019). Process dynamic investigations and emission analyses of biodiesel produced using Sr-Ce mixed metal oxide heterogeneous catalyst. Journal of Environmental Management, 248, Article 109218. https://doi.org/10.1016/j.jenvman.2019.06.119
Bastos, R. R. C., da Luz Corrêa, A. P., da Luz, P. T. S., da Rocha Filho, G. N., Zamian, J. R., & da Conceição, L. R. V. (2020). Optimization of biodiesel production using sulfonated carbon-based catalyst from an amazon agro-industrial waste. Energy Conversion and Management, 205, Article 112457. https://doi.org/10.1016/j.enconman.2019.112457
Bayat, A., Baghdadi, M., & Bidhendi, G. N. (2018). Tailored magnetic nano-alumina as an efficient catalyst for transesterification of waste cooking oil: Optimization of biodiesel production using response surface methodology. Energy Conversion and Management, 177, 395-405. https://doi.org/10.1016/j.enconman.2018.09.086
Boey, P. L., Ganesan, S., Maniam, G. P., Khairuddean, M., & Efendi, J. (2013). A new heterogeneous acid catalyst for esterification: Optimization using response surface methodology. Energy Conversion and Management, 65, 392-396. https://doi.org/10.1016/j.enconman.2012.08.002
Boffito, D. C., Pirola, C., Galli, F., Di Michele, A., & Bianchi, C. L. (2013). Free fatty acids esterification of waste cooking oil and its mixtures with rapeseed oil and diesel. Fuel, 108, 612-619. https://doi.org/10.1016/j.fuel.2012.10.069
Chandane, V. S., Rathod, A. P., Wasewar, K. L., & Jadhav, P. G. (2020). Response surface methodology and artificial neural networks for optimization of catalytic esterification of lactic acid. Chemical Engineering and Technology, 43(11), 2315-2324. https://doi.org/10.1002/ceat.202000041
Chen, C., Chitose, A., Kusadokoro, M., Nie, H., Xu, W., Yang, F., & Yang, S. (2021). Sustainability and challenges in biodiesel production from waste cooking oil: An advanced bibliometric analysis. Energy Reports, 7, 4022-4034. https://doi.org/10.1016/j.egyr.2021.06.084
Chen, S. Y., Attanatho, L., Chang, A., Laosombut, T., Nishi, M., Mochizuki, T., Takagi, H., Yang, C. M., Abe, Y., Toba, M., Chollacoop, N., & Yoshimura, Y. (2019). Profiling and catalytic upgrading of commercial palm oil-derived biodiesel fuels for high-blend fuels. Catalysis Today, 332, 122-131. https://doi.org/10.1016/j.cattod.2018.05.039
Dawodu, F. A., Ayodele, O., Xin, J., Zhang, S., & Yan, D. (2014). Effective conversion of non-edible oil with high free fatty acid into biodiesel by sulphonated carbon catalyst. Applied Energy, 114, 819-826.
de Oliveira, A. de N., de Lima, M. A. B., Pires, L. H. de O., da Silva, M. R., da Luz, P. T. S., Angélica, R. S., Filho, G. N. d. R., da Costa, C. E. F., Luque, R., & do Nascimento, L. A. S. (2019). Bentonites modified with phosphomolybdic heteropolyacid (HPMo) for biowaste to biofuel production. Materials, 12(9), Article 1431. https://doi.org/10.3390/ma12091431
Dhawane, S. H., Kumar, T., & Halder, G. (2015). Central composite design approach towards optimization of flamboyant pods derived steam activated carbon for its use as heterogeneous catalyst in transesterification of Hevea brasiliensis oil. Energy Conversion and Management, 100, 277-287. https://doi.org/10.1016/j.enconman.2015.04.083
Dhawane, S. H., Kumar, T., & Halder, G. (2016). Biodiesel synthesis from Hevea brasiliensis oil employing carbon supported heterogeneous catalyst: Optimization by Taguchi method. Renewable Energy, 89, 506-514. https://doi.org/10.1016/j.renene.2015.12.027
Ding, J., Xia, Z., & Lu, J. (2012). Esterification and deacidification of a waste cooking oil (TAN 68.81 mg KOH/g) for biodiesel production. Energies, 5(8), 2683-2691. https://doi.org/10.3390/en5082683
Endut, A., Abdullah, S. H. Y. S., Hanapi, N. H. M., Hamid, S. H. A., Lananan, F., Kamarudin, M. K. A., Umar, R., Juahir, H., & Khatoon, H. (2017). Optimization of biodiesel production by solid acid catalyst derived from coconut shell via response surface methodology. International Biodeterioration and Biodegradation, 124, 250-257. https://doi.org/10.1016/j.ibiod.2017.06.008
Fadhil, A. B., Aziz, A. M., & Al-Tamer, M. H. (2016). Biodiesel production from Silybum marianum L. seed oil with high FFA content using sulfonated carbon catalyst for esterification and base catalyst for transesterification. Energy Conversion and Management, 108, 255-265. https://doi.org/10.1016/j.enconman.2015.11.013
Farabi, M. S. A., Ibrahim, M. L., Rashid, U., & Taufiq-Yap, Y. H. (2019). Esterification of palm fatty acid distillate using sulfonated carbon-based catalyst derived from palm kernel shell and bamboo. Energy Conversion and Management, 181, 562-570. https://doi.org/10.1016/j.enconman.2018.12.033
Fauziyah, M., Widiyastuti, W., & Setyawan, H. (2020). Sulfonated carbon aerogel derived from coir fiber as high performance solid acid catalyst for esterification. Advanced Powder Technology, 31(4), 1412-1419. https://doi.org/10.1016/j.apt.2020.01.022
Fawaz, E. G., Salam, D. A., & Daou, T. J. (2020). Esterification of linoleic acid using HZSM-5 zeolites with different Si/Al ratios. Microporous and Mesoporous Materials, 294, Article 109855. https://doi.org/10.1016/j.micromeso.2019.109855
Flores, K. P., Omega, J. L. O., Cabatingan, L. K., Go, A. W., Agapay, R. C., & Ju, Y. H. (2019). Simultaneously carbonized and sulfonated sugarcane bagasse as solid acid catalyst for the esterification of oleic acid with methanol. Renewable Energy, 130, 510-523. https://doi.org/10.1016/j.renene.2018.06.093
Fonseca, J. M., Spessato, L., Cazetta, A. L., Bedin, K. C., Melo, S. A. R., Souza, F. L., & Almeida, V. C. (2020). Optimization of sulfonation process for the development of carbon-based catalyst from crambe meal via response surface methodology. Energy Conversion and Management, 217, Article 112975. https://doi.org/10.1016/j.enconman.2020.112975
Fregolente, P. B. L., Fregolente, L. V., & Wolf MacIel, M. R. (2012). Water content in biodiesel, diesel, and biodiesel-diesel blends. Journal of Chemical and Engineering Data, 57(6), 1817-1821. https://doi.org/10.1021/je300279c
Gan, S., Ng, H. K., Chan, P. H., & Leong, F. L. (2012). Heterogeneous free fatty acids esterification in waste cooking oil using ion-exchange resins. Fuel Processing Technology, 102, 67-72. https://doi.org/10.1016/j.fuproc.2012.04.038
Giakoumis, E. G., & Sarakatsanis, C. K. (2018). Estimation of biodiesel cetane number, density, kinematic viscosity and heating values from its fatty acid weight composition. Fuel, 222, 574-585. https://doi.org/10.1016/j.fuel.2018.02.187
Gupta, A. R., & Rathod, V. K. (2018). Waste cooking oil and waste chicken eggshells derived solid base catalyst for the biodiesel production: Optimization and kinetics. Waste Management, 79, 169-178. https://doi.org/10.1016/j.wasman.2018.07.022
Hajilar, S., & Shafei, B. (2019). Thermal transport properties at interface of fatty acid esters enhanced with carbon-based nanoadditives. International Journal of Heat and Mass Transfer, 145, Article 118762. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118762
Hasanudin, H., Asri, W. R., Tampubolon, K., Riyant, F., Purwaningrum, W., & Wijaya, K. (2022). Dehydration isopropyl alcohol to diisopropyl ether over molybdenum phosphide pillared bentonite. Pertanika Journal of Science & Technology, 30(2), 1739-1754. https://doi.org/10.47836/pjst.30.2.47
Hasanudin, H., Asri, W. R., Said, M., Hidayati, P. T., Purwaningrum, W., Novia, N., & Wijaya, K. (2022). Hydrocracking optimization of palm oil to bio-gasoline and bio-aviation fuels using molybdenum nitride-bentonite catalyst. RSC Advances, 12(26), 16431-16443. https://doi.org/10.1039/D2RA02438A
Hasanudin, H., Putri, Q. U., Agustina, T. E., & Hadiah, F. (2022). Esterification of free fatty acid in palm oil mill effluent using sulfated carbon-zeolite composite catalyst. Pertanika Journal of Science & Technology, 30(1), 377-395. https://doi.org/10.47836/pjst.30.1.21
Helmi, M., Tahvildari, K., Hemmati, A., Aberoomand Azar, P., & Safekordi, A. (2020). Phosphomolybdic acid/graphene oxide as novel green catalyst using for biodiesel production from waste cooking oil via electrolysis method: Optimization using with response surface methodology (RSM). Fuel, 287, Article 119528. https://doi.org/10.1016/j.fuel.2020.119528
Ibeto, C. N., Okoye, C. O. B., & Ofoefule, A. U. (2012). Comparative study of the physicochemical characterization of some oils as potential feedstock for biodiesel production. ISRN Renewable Energy, 2012, 1-5. https://doi.org/10.5402/2012/621518
Jamil, U., Khoja, A. H., Liaquat, R., Naqvi, S. R., Omar, W. N. N. W., & Amin, N. A. S. (2020). Copper and calcium-based metal organic framework (MOF) catalyst for biodiesel production from waste cooking oil: A process optimization study. Energy Conversion and Management, 215, Article 112934. https://doi.org/10.1016/j.enconman.2020.112934
Jenie, S. N. A., Kristiani, A., Sudiyarmanto, Khaerudini, D. S., & Takeishi, K. (2020). Sulfonated magnetic nanobiochar as heterogeneous acid catalyst for esterification reaction. Journal of Environmental Chemical Engineering, 8(4), Article 103912. https://doi.org/10.1016/j.jece.2020.103912
Kamaronzaman, M. F. F., Kahar, H., Hassan, N., Hanafi, M. F., & Sapawe, N. (2020a). Analysis of biodiesel product derived from waste cooking oil using fourier transform infrared spectroscopy. Materials Today: Proceedings, 31, 329-332. https://doi.org/10.1016/j.matpr.2020.06.088
Kamaronzaman, M. F. F., Kahar, H., Hassan, N., Hanafi, M. F., & Sapawe, N. (2020b). Optimization of biodiesel production from waste cooking oil using eggshell catalyst. Materials Today: Proceedings, 31, 324-328. https://doi.org/10.1016/j.matpr.2020.06.080
Karmakar, B., & Halder, G. (2021). Accelerated conversion of waste cooking oil into biodiesel by injecting 2-propanol and methanol under superheated conditions: A novel approach. Energy Conversion and Management, 247, Article 114733. https://doi.org/10.1016/j.enconman.2021.114733
Karmakar, R., Kundu, K., & Rajor, A. (2018). Fuel properties and emission characteristics of biodiesel produced from unused algae grown in India. Petroleum Science, 15(2), 385-395. https://doi.org/10.1007/s12182-017-0209-7
Kumar, S., Shamsuddin, M. R., Farabi, M. S. A., Saiman, M. I., Zainal, Z., & Taufiq-Yap, Y. H. (2020). Production of methyl esters from waste cooking oil and chicken fat oil via simultaneous esterification and transesterification using acid catalyst. Energy Conversion and Management, 226, Article 113366. https://doi.org/10.1016/j.enconman.2020.113366
Kusumaningtyas, R. D., Prasetiawan, H., Putri, R. D. A., Triwibowo, B., Kurnita, S. C. F., Anggraeni, N. D., Veny, H., Hamzah, F., & Rodhi, M. N. M. (2021). Optimisation of free fatty acid removal in nyamplung seed oil (Callophyllum inophyllum l.) using response surface methodology analysis. Pertanika Journal of Science and Technology, 29(4), 2605-2623. https://doi.org/10.47836/PJST.29.4.20
Lathiya, D. R., Bhatt, D. V., & Maheria, K. C. (2018). Synthesis of sulfonated carbon catalyst from waste orange peel for cost effective biodiesel production. Bioresource Technology Reports, 2, 69-76. https://doi.org/10.1016/j.biteb.2018.04.007
Lin, C. Y., & Ma, L. (2020). Influences of water content in feedstock oil on burning characteristics of fatty acid methyl esters. Processes, 8(9), Article 1130. https://doi.org/10.3390/PR8091130
Lin, J., Jiang, B., & Zhan, Y. (2018). Effect of pre-treatment of bentonite with sodium and calcium ions on phosphate adsorption onto zirconium-modified bentonite. Journal of Environmental Management, 217, 183-195. https://doi.org/10.1016/j.jenvman.2018.03.079
Ma, Y., Wang, Q., Zheng, L., Gao, Z., Wang, Q., & Ma, Y. (2016). Mixed methanol/ethanol on transesterification of waste cooking oil using Mg/Al hydrotalcite catalyst. Energy, 107, 523-531. https://doi.org/10.1016/j.energy.2016.04.066
Mahesh, S. E., Ramanathan, A., Begum, K. M. M. S., & Narayanan, A. (2015). Biodiesel production from waste cooking oil using KBr impregnated CaO as catalyst. Energy Conversion and Management, 91, 442-450. https://doi.org/10.1016/j.enconman.2014.12.031
Mansir, N., Teo, S. H., Rabiu, I., & Taufiq-Yap, Y. H. (2018). Effective biodiesel synthesis from waste cooking oil and biomass residue solid green catalyst. Chemical Engineering Journal, 347, 137-144. https://doi.org/10.1016/j.cej.2018.04.034
Mazubert, A., Aubin, J., Elgue, S., & Poux, M. (2014). Intensification of waste cooking oil transformation by transesterification and esterification reactions in oscillatory baffled and microstructured reactors for biodiesel production. Green Processing and Synthesis, 3(6), 419-429. https://doi.org/10.1515/gps-2014-0057
Mishra, S., Anand, K., & Mehta, P. S. (2016). Predicting the cetane number of biodiesel fuels from their fatty acid methyl ester composition. Energy and Fuels, 30(12), 10425-10434. https://doi.org/10.1021/acs.energyfuels.6b01343
Mulay, A., & Rathod, V. K. (2021). Microwave-assisted heterogeneous esterification of dibutyl maleate: Optimization using response surface methodology. Chemical Data Collections, 34, Article 100740. https://doi.org/10.1016/j.cdc.2021.100740
Munir, M., Ahmad, M., Mubashir, M., Asif, S., Waseem, A., Mukhtar, A., Saqib, S., Munawaroh, H. S. H., Lam, M. K., Shiong Khoo, K., Bokhari, A., & Loke Show, P. (2021). A practical approach for synthesis of biodiesel via non-edible seeds oils using trimetallic based montmorillonite nano-catalyst. Bioresource Technology, 328, Article 124859. https://doi.org/10.1016/j.biortech.2021.124859
Narula, V., Khan, M. F., Negi, A., Kalra, S., Thakur, A., & Jain, S. (2017). Low temperature optimization of biodiesel production from algal oil using CaO and CaO/Al2O3 as catalyst by the application of response surface methodology. Energy, 140, 879-884. https://doi.org/10.1016/j.energy.2017.09.028
Nata, I. F., Putra, M. D., Irawan, C., & Lee, C. K. (2017). Catalytic performance of sulfonated carbon-based solid acid catalyst on esterification of waste cooking oil for biodiesel production. Journal of Environmental Chemical Engineering, 5(3), 2171-2175. https://doi.org/10.1016/j.jece.2017.04.029
Ngaosuwan, K., Goodwin, J. G., & Prasertdham, P. (2016). A green sulfonated carbon-based catalyst derived from coffee residue for esterification. Renewable Energy, 86, 262-269. https://doi.org/10.1016/j.renene.2015.08.010
Niu, S., Ning, Y., Lu, C., Han, K., Yu, H., & Zhou, Y. (2018). Esterification of oleic acid to produce biodiesel catalyzed by sulfonated activated carbon from bamboo. Energy Conversion and Management, 163(17923), 59-65. https://doi.org/10.1016/j.enconman.2018.02.055
Noshadi, I., Amin, N. A. S., & Parnas, R. S. (2012). Continuous production of biodiesel from waste cooking oil in a reactive distillation column catalyzed by solid heteropolyacid: Optimization using response surface methodology (RSM). Fuel, 94, 156-164. https://doi.org/10.1016/j.fuel.2011.10.018
Omidvarborna, H., Kumar, A., & Kim, D. (2016). Science of the total environment variation of diesel soot characteristics by different types and blends of biodiesel in a laboratory combustion chamber. Science of the Total Environment, 544, 450-459. https://doi.org/10.1016/j.scitotenv.2015.11.076
Özbay, N., Oktar, N., & Tapan, N. A. (2008). Esterification of free fatty acids in waste cooking oils (WCO): Role of ion-exchange resins. Fuel, 87(10-11), 1789-1798. https://doi.org/10.1016/j.fuel.2007.12.010
Palmonari, A., Cavallini, D., Sniffen, C. J., Fernandes, L., Holder, P., Fagioli, L., Fusaro, I., Biagi, G., Formigoni, A., & Mammi, L. (2020). Short communication: Characterization of molasses chemical composition. Journal of Dairy Science, 103(7), 6244-6249. https://doi.org/10.3168/jds.2019-17644
Rabie, A. M., Mohammed, E. A., & Negm, N. A. (2018). Feasibility of modified bentonite as acidic heterogeneous catalyst in low temperature catalytic cracking process of biofuel production from nonedible vegetable oils. Journal of Molecular Liquids, 254(2018), 260-266. https://doi.org/10.1016/j.molliq.2018.01.110
Rafati, A., Tahvildari, K., & Nozari, M. (2019). Production of biodiesel by electrolysis method from waste cooking oil using heterogeneous MgO-NaOH nano catalyst. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 41(9), 1062-1074. https://doi.org/10.1080/15567036.2018.1539139
Rahimzadeh, H., Tabatabaei, M., Aghbashlo, M., Panahi, H. K. S., Rashidi, A., Goli, S. A. H., Mostafaei, M., Ardjmand, M., & Nizami, A. S. (2018). Potential of acid-activated bentonite and SO3H-functionalized MWCNTs for biodiesel production from residual olive oil under biorefinery scheme. Frontiers in Energy Research, 6, 1-10. https://doi.org/10.3389/fenrg.2018.00137
Rocha, P. D., Oliveira, L. S., & Franca, A. S. (2019). Sulfonated activated carbon from corn cobs as heterogeneous catalysts for biodiesel production using microwave-assisted transesterification. Renewable Energy, 143, 1710-1716. https://doi.org/10.1016/j.renene.2019.05.070
Rodríguez-Fernández, J., Hernández, J. J., Calle-Asensio, A., Ramos, Á., & Barba, J. (2019). Selection of blends of diesel fuel and advanced biofuels based on their physical and thermochemical properties. Energies, 12(11), Article 2034. https://doi.org/10.3390/en12112034
Sahani, S., Roy, T., & Sharma, Y. C. (2020). Smart waste management of waste cooking oil for large scale high quality biodiesel production using Sr-Ti mixed metal oxide as solid catalyst: Optimization and E-metrics studies. Waste Management, 108, 189-201. https://doi.org/10.1016/j.wasman.2020.04.036
Sari, E. P., Wijaya, K., Trisunaryanti, W., Syoufian, A., Hasanudin, H., & Saputri, W. D. (2021). The effective combination of zirconia superacid and zirconia-impregnated CaO in biodiesel manufacturing: Utilization of used coconut cooking oil (UCCO). International Journal of Energy and Environmental Engineering, 13, 967-978. https://doi.org/10.1007/s40095-021-00439-4
Sharma, A., Kodgire, P., & Kachhwaha, S. S. (2019). Biodiesel production from waste cotton-seed cooking oil using microwave-assisted transesterification: Optimization and kinetic modeling. Renewable and Sustainable Energy Reviews, 116, Article 109394. https://doi.org/10.1016/j.rser.2019.109394
Singh, V., Belova, L., Singh, B., & Sharma, Y. C. (2018). Biodiesel production using a novel heterogeneous catalyst, magnesium zirconate (Mg2Zr5O12): Process optimization through response surface methodology (RSM). Energy Conversion and Management, 174, 198-207. https://doi.org/10.1016/j.enconman.2018.08.029
Soegiantoro, G. H., Chang, J., Rahmawati, P., Christiani, M. F., & Mufrodi, Z. (2019). Home-made ECO green biodiesel from chicken fat (CIAT) and waste cooking oil (pail). Energy Procedia, 158, 1105-1109. https://doi.org/10.1016/j.egypro.2019.01.267
Sree, J. V., Chowdary, B. A., Kumar, K. S., Anbazhagan, M. P., & Subramanian, S. (2021). Optimization of the biodiesel production from waste cooking oil using homogeneous catalyst and heterogeneous catalysts. Materials Today: Proceedings, 46(10), 4900-4908. https://doi.org/10.1016/j.matpr.2020.10.332
Suganuma, S., Nakajima, K., Kitano, M., & Hayashi, S. (2012). sp3-linked amorphous carbon with sulfonic acid groups as a heterogeneous acid catalyst. ChemSusChem, 5(9), 1841-1846. https://doi.org/10.1002/cssc.201200010
Suresh, R., Antony, J. V., Vengalil, R., Kochimoolayil, G. E., & Joseph, R. (2017). Esterification of free fatty acids in non-edible oils using partially sulfonated polystyrene for biodiesel feedstock. Industrial Crops and Products, 95, 66-74. https://doi.org/10.1016/j.indcrop.2016.09.060
Suwannasom, P., Tansupo, P., & Ruangviriyachai, C. (2016). A bone-based catalyst for biodiesel production from waste cooking oil. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 38(21), 3167-3173. https://doi.org/10.1080/15567036.2015.1137998
Tan, Y. H., Abdullah, M. O., Nolasco-Hipolito, C., & Zauzi, N. S. A. (2017). Application of RSM and Taguchi methods for optimizing the transesterification of waste cooking oil catalyzed by solid ostrich and chicken-eggshell derived CaO. Renewable Energy, 114, 437-447. https://doi.org/10.1016/j.renene.2017.07.024
Tang, Z. E., Lim, S., Pang, Y. L., Shuit, S. H., & Ong, H. C. (2020). Utilisation of biomass wastes based activated carbon supported heterogeneous acid catalyst for biodiesel production. Renewable Energy, 158, 91-102. https://doi.org/10.1016/j.renene.2020.05.119
Wu, Z., Li, H., & Tu, D. (2015). Application of fourier transform infrared (FT-IR) spectroscopy combined with chemometrics for analysis of rapeseed oil adulterated with refining and purificating waste cooking oil. Food Analytical Methods, 8(10), 2581-2587. https://doi.org/10.1007/s12161-015-0149-z
Xincheng, T., Niu, S., Zhao, S., Zhang, X., Li, X., Yu, H., Lu, C., & Han, K. (2019). Synthesis of sulfonated catalyst from bituminous coal to catalyze esterification for biodiesel production with promoted mechanism analysis. Journal of Industrial and Engineering Chemistry, 77, 432-440. https://doi.org/10.1016/j.jiec.2019.05.008
Yahya, S., Wahab, S. K. M., & Harun, F. W. (2020). Optimization of biodiesel production from waste cooking oil using Fe-Montmorillonite K10 by response surface methodology. Renewable Energy, 157, 164-172. https://doi.org/10.1016/j.renene.2020.04.149
Yuliana, M., Santoso, S. P., Soetaredjo, F. E., Ismadji, S., Ayucitra, A., Angkawijaya, A. E., Ju, Y. H., & Tran-Nguyen, P. L. (2020). A one-pot synthesis of biodiesel from leather tanning waste using supercritical ethanol: Process optimization. Biomass and Bioenergy, 142, Article 105761. https://doi.org/10.1016/j.biombioe.2020.105761
Zhang, B., Gao, M., Geng, J., Cheng, Y., Wang, X., Wu, C., Wang, Q., Liu, S., & Cheung, S. M. (2021). Catalytic performance and deactivation mechanism of a one-step sulfonated carbon-based solid-acid catalyst in an esterification reaction. Renewable Energy, 164, 824-832. https://doi.org/10.1016/j.renene.2020.09.076
Zhang, H., Gao, J., Zhao, Z., Chen, G. Z., Wu, T., & He, F. (2016). Esterification of fatty acids from waste cooking oil to biodiesel over a sulfonated resin/PVA composite. Catalysis Science and Technology, 6(14), 5590-5598. https://doi.org/10.1039/c5cy02133b
Zhang, M., Sun, A., Meng, Y., Wang, L., Jiang, H., & Li, G. (2015). High activity ordered mesoporous carbon-based solid acid catalyst for the esterification of free fatty acids. Microporous and Mesoporous Materials, 204, 210-217. https://doi.org/10.1016/j.micromeso.2014.11.027
Zik, N. A. F. A., Sulaiman, S., & Jamal, P. (2020). Biodiesel production from waste cooking oil using calcium oxide/nanocrystal cellulose/polyvinyl alcohol catalyst in a packed bed reactor. Renewable Energy, 155, 267-277. https://doi.org/10.1016/j.renene.2020.03.144
ISSN 1511-3701
e-ISSN 2231-8542