PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Abdullah, M., Rosmadi, H. A., Azman, N. Q. M. K., Sebera, Q. U., Puteh, M. H., Muhamad, A., & Zaiton, S. N. A. (2018). Effective drying method in the utilization of food waste into compost materials using effective microbe (EM). In AIP Conference Proceedings (Vol. 2030, No. 1, p. 020120). AIP Publishing LLC. https://doi.org/10.1063/1.5066761

  • Al-Domi, H., Al-Rawajfeh, H., Aboyousif, F., Yaghi, S., Mashal, R., & Fakhoury, J. (2011). Determining and addressing food plate waste in a group of students at the University of Jordan. Pakistan Journal of Nutrition, 10(9), 871-878. https://doi.org/10.3923/pjn.2011.871.878

  • Al-kharabsheh, S., & Goswami, D. Y. (2004). Solar Distillation and Drying. University of Florida. https://doi.org/10.1016/B0-12-176480-X/00319-3

  • Anis, S., Kurniawan, Y. A., Sumbodo, W., Alhakim, R., & Lestari, S. E. (2018). Thermal characteristics of microwave reactor for pyrolysis of food waste. Journal of Physical Science, 29, 1-13. https://doi.org/10.21315/jps2018.29.s2.1

  • Artola, A., Barrena, R., Font, X., Gabriel, D., Gea, T., Mudhoo, A., & Sánchez, A. (2009). Composting from a sustainable point of view: Respirometric indices as key parameter. Dynamic Soil, Dynamic Plant, 3(1),1-16.

  • Arumugam, V., Abdullah, I., Yusoff, I. S., Abdullah, N. L., Tahir, R. M., Nasir, A. M., Omar, A. E., & Ismail, M. H. (2021). The impact of COVID-19 on solid waste generation in the perspectives of socioeconomic and people’s behavior: A case study in Serdang, Malaysia. Sustainability, 13(23), Article 13045. https://doi.org/10.3390/su132313045

  • Assegehegn, G., Brito-del la Fuente, E. J.M., & Gallegos,C. (2020). Freeze-drying: A relevant unit operation in the manufacture of foods, nutritional products, and pharmaceuticals. Advances in Food and Nutrition Research, 93, 1-58. https://doi.org/10.1016/bs.afnr.2020.04.001

  • Bahtiar, S. A., Muayyad, A., Ulfaningtias, L., Anggara, J., Priscilla, C., & Miswar, M. (2017). Compost use banana weevil (Musa Acuminata) to boost growth and content of sugar sweet corn (Zea mays L. Saccharata). Journal of Agricultural Science, 14(1), 18-22. https://doi.org/10.32528/agr.v14i1.405

  • Bennamoun, L., & Li, J. (2018). Drying process of food: Fundamental aspects and mathematical modeling. In Natural and artificial flavoring agents and food dyes (pp. 29-82). Academic Press. https://doi.org/10.1016/B978-0-12-811518-3.00002-8

  • Bhatta, S., Janezic, T. S., & Ratti, C. (2020). Freeze-drying of plant-based foods. Foods, 9(1), 1-22. https://doi.org/10.3390/foods9010087

  • Blakeney, M. (2019). Food loss and food waste: Causes and solutions. Edward Elgar Publishing. https://doi.org/10.4337/9781788975391

  • Branch, E., & Borghei, A. M. (2021). Evaluate the drying of food waste using cabinet dryer. ResearchSquare. https://doi.org/10.21203/rs.3.rs-874515/v1

  • Brock, C., Oltmanns, M., Matthes, C., Schmehe, B., Schaaf, H., Burghardt, D., Horst, H., & Spieß, H. (2021). Compost as an option for sustainable crop production at low stocking rates in organic farming. Agronomy, 11, 1-17. https://doi.org/10.3390/agronomy11061078

  • Cam, I. B., Gulmez, H. B., Eroglu, E., & Topuz, A. (2017). Strawberry drying: Development of a closed-cycle modified atmosphere drying system for food products and the performance evaluation of a case study. Drying Technology, 36(12), 1460-1473. https://doi.org/10.1080/07373937.2017.1409233

  • Changrue, V., & Raghavan, V. G. S. (2006). Microwave drying of fruits and vegetables. Stewart Postharvest Review, 2(6), 1-7. https://doi.org/10.2212/spr.2006.6.4

  • Chauhan, C., Dhir, A., Akram, M. U., & Salo, J. (2021). Food loss and waste in food supply chains. A systematic literature review and framework development approach. Journal of Cleaner Production, 295, Article 126438. https://doi.org/10.1016/j.jclepro.2021.126438

  • Chua, G. K., Tan, F. H. Y., Chew, F. N., & Mohd-Hairul, A. R. (2019). Nutrients content of food wastes from different sources and its pre-treatment. In AIP Conference Proceedings (Vol. 2124, No. 1, p. 020031). AIP Publishing LLC. https://doi.org/10.1063/1.5117091

  • Compost Education Centre. (2010). Trench composting (Factsheet Series). https://compost.bc.ca/wp-content/uploads/2021/03/5-Trenching.pdf

  • Crohn, D. M. (2016). Assessing compost quality for agriculture. California Digital Library. https://doi.org/10.3733/ucanr.8514

  • Dhamodharan, K., Sudharsan, V., Veluchamy, C., Pugazhendhi, A., & Rajendran, K. (2019). Science of the total environment emission of volatile organic compounds from composting : A review on assessment, treatment and perspectives. Science of the Total Environment, 695, Article 133725. https://doi.org/10.1016/j.scitotenv.2019.133725

  • Dhar, A. (2016). Evaluation of food waste diversion potential and economics of using food waste dehydrators (Doctoral dissertation). The University of Texas, USA.

  • Dhumne, L. R., Bipte, V. H., & Jibhkate, Y. M. (2016). Solar dryers for drying agricultural products. International Journal of Engineering Research, 3(2), 80-84.

  • Durance, T., & Yaghmaee, P. (2011). Microwave dehydration of food and food ingredients. Comprehensive Biotechnology, 2(1), 617-628. https://doi.org/10.1016/B978-0-08-088504-9.00306-8

  • Ebner, J. H., Labatut, R. A., Lodge, J. S., Williamson, A. A., & Trabold, T. A. (2016). Anaerobic co-digestion of commercial food waste and dairy manure: Characterizing biochemical parameters and synergistic effects. Waste Management, 52, 286-294. https://doi.org/10.1016/j.wasman.2016.03.046

  • Ermolaev, E., Sundberg, C., Pell, M., Smårs, S., & Jönsson, H. (2019). Effects of moisture on emissions of methane, nitrous oxide and carbon dioxide from food and garden waste composting. Journal of Cleaner Production, 240, Article 118165. https://doi.org/10.1016/j.jclepro.2019.118165

  • Feng, H., Yin, Y., & Tang, J. (2012). Microwave drying of food and agricultural materials: Basics and heat and mass microwave drying of food and agricultural materials. Food Engineering Reviews,4(2), 89-106. https://doi.org/10.1007/s12393-012-9048-x

  • Firdaus, A. R. M., Samah, M. A. A., & Hamid, K. B. A. (2018). CHNS analysis towards food waste in composting. Journal CleanWAS, 1(1), 06-10. https://doi.org/10.26480/jcleanwas.01.2018.06.10

  • Fisgativa, H., Tremier, A., & Dabert, P. (2016). Characterizing the variability of food waste quality : A need for efficient valorisation through anaerobic digestion. Waste Management, 50, 264-274. https://doi.org/10.1016/j.wasman.2016.01.041

  • Galanakis, C. M. (2012). Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends in Food Science and Technology, 26(2), 68-87. https://doi.org/10.1016/j.tifs.2012.03.003

  • Georganas, A., Giamouri, E., Pappas, A. C., Papadomichelakis, G., Galliou, F., Manios, T., Tsiplakou, E., Fegeros, K., & Zervas, G. (2020). Bioactive compounds in food waste: A review on the transformation of food waste to animal feed. Foods, 9(3), 1-18. https://doi.org/10.3390/foods9030291

  • Guerra-Rodríguez, E., Vázquez, M., & Diaz-Raviña, M. (2001). Dynamics of physicochemical and biological parameters during the co-composting of chestnut burr/leaf litter with solid poultry manure. Journal of the Science of Food and Agriculture, 81(7), 648-652. https://doi.org/10.1002/jsfa.866

  • Hall, M. (2016). Techno-environmental analysis of generating animal feed from wasted food products. Rochester Institute of Technology.

  • Haouas, A., El Modafar, C., Douira, A., Ibnsouda-Koraichi, S., Filali-Maltouf, A., Moukhli, A., & Amir, S. (2021). Evaluation of the nutrients cycle, humification process, and agronomic efficiency of organic wastes composting enriched with phosphate sludge. Journal of Cleaner Production, 302, Article 127051. https://doi.org/10.1016/j.jclepro.2021.127051

  • Harrison, R. B. (2008). Composting and formation of humic substances. Encyclopedia of Ecology, 5, 713-719. https://doi.org/10.1016/B978-008045405-4.00262-7

  • Hegde, V. N., Hosur, V. S., Rathod, S. K., Harsoor, P. A., & Narayana, K. B. (2015). Design, fabrication and performance evaluation of solar dryer for banana. Energy, Sustainability and Society, 5(1), 1-12. https://doi.org/10.1186/s13705-015-0052-x

  • Ho, K. S., & Chu, L. M. (2019). Characterization of food waste from different sources in Hong Kong. Journal of the Air and Waste Management Association, 69(3), 277-288. https://doi.org/10.1080/10962247.2018.1526138

  • Iacovidou, E., Ohandja, D. G., Gronow, J., & Voulvoulis, N. (2012). The household use of food waste disposal units as a waste management option: A review. Critical Reviews in Environmental Science and Technology, 42(14), 1485-1508. https://doi.org/10.1080/10643389.2011.556897

  • Ishola, T. M., & Ishola, E. T. (2019). Composting and sustainable development. In W. L. Filho (Ed.) Encyclopedia of Sustainability in Higher Education (pp. 1-8). Springer. https://doi.org/10.1007/978-3-319-63951-2_122-1

  • Ismail, M. H., Ghazi, T. I. M., Hamzah, M. H., Manaf, L. A., Tahir, R. M., Nasir, A. M., & Omar, A. E. (2020a). Impact of movement control order (Mco) due to coronavirus disease (covid-19) on food waste generation: A case study in klang valley, malaysia. Sustainability, 12(21), 1-17. https://doi.org/10.3390/su12218848

  • Ismail, M. H., Khan, K. A., Ngadisih, N., Irie, M., Ong, S. P., Hii, C. L., & Law, C. L. (2020b). Two-step falling rate in the drying kinetics of rice noodle subjected to pre-treatment and temperature. Journal of Food Processing and Preservation, 44(11), 1-11. https://doi.org/10.1111/jfpp.14849

  • Ismail, M. H., Lik, H. C., Routray, W., & Woo, M. W. (2021). Determining the effect of pre-treatment in rice noodle quality subjected to dehydration through hierarchical scoring. Processes, 9(8), 1-12. https://doi.org/10.3390/pr9081309

  • Jahanbakhshi, A., & Kheiralipour, K. (2019). Influence of vermicompost and sheep manure on mechanical properties of tomato fruit. Food Science and Nutrition, 7(4), 1172-1178. https://doi.org/10.1002/fsn3.877

  • Jiménez, E. I., & García, V. P. (1992). Relationships between organic carbon and total organic matter in municipal solid wastes and city refuse composts. Bioresource Technology, 41(3), 265-272. https://doi.org/10.1016/0960-8524(92)90012-M

  • Kannah, R. Y., Merrylin, J., Devi, T. P., Kavitha, S., & Sivashanmugam, P. (2020). Bioresource technology reports food waste valorization: Biofuels and value added product recovery. Bioresource Technology Reports, 11, Article 100524. https://doi.org/10.1016/j.biteb.2020.100524

  • Khan, A., & Ishaq, F. (2011). Chemical nutrient analysis of different composts (vermicompost and pitcompost) and their effect on the growth of a vegetative crop Pisum sativum. Asian Journal of Plant Science and Research, 1(1), 116-130.

  • Khodifad, B. C., & Dhamsaniya, N. K. (2020). Drying of food materials by microwave energy - A review. International Journal of Current Microbiology and Applied Sciences, 9(5), 1950-1973. https://doi.org/10.20546/ijcmas.2020.905.223

  • Kibler, K. M., Reinhart, D., Hawkins, C., Motlagh, A. M., & Wright, J. (2018). Food waste and the food-energy-water nexus: A review of food waste management alternatives. Waste Management, 74, 52-62. https://doi.org/10.1016/j.wasman.2018.01.014

  • Liaquat, R., Jamal, A., Tauseef, I., Qureshi, Z., Farooq, U., Imran, M., & Ali, M. I. (2017). Characterizing bacterial consortia from an anaerobic digester treating organic waste for biogas production. Polish Journal of Environmental Studies, 26(2), 709-716. https://doi.org/10.15244/pjoes/59332

  • Lim, W. J., Chin, N. L., Yusof, A. Y., Yahya, A., & Tee, T. P. (2016). Food waste handling in Malaysia and comparison with other Asian countries. International Food Research Journal, 23, S1-S6.

  • Liu, H., Jiaqiang, E., Ma, X., & Xie, C. (2016). Influence of microwave drying on the combustion characteristics of food waste. Drying Technology, 34(12), 1397-1405. https://doi.org/10.1080/07373937.2015.1118121

  • Loizidou, A. S. D. M. M. (2015). Dehydration of domestic food waste at source as an alternative approach for food waste management. Waste and Biomass Valorization, 6(2), 167-176.

  • Mahmood, A., Iguchi, R., & Kataoka, R. (2019). Multifunctional food waste fertilizer having the capability of Fusarium - Growth inhibition and phosphate solubility: A new horizon of food waste recycle using microorganisms. Waste Management, 94, 77-84. https://doi.org/10.1016/j.wasman.2019.05.046

  • Makan, A., Assobhei, O., & Mountadar, M. (2013). Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco. Journal of Environmental Health Science and Engineering, 10(1), 1-9. https://doi.org/10.1186/1735-2746-10-3

  • Maragkaki, A., Galliou, F., Markakis, N., Sabathianakis, G., Tsompanidis, C., Lolos, G., Mavrogiannis, G., Koukakis, G., Lasaridi, K., & Manios, T. (2016). Initial investigation of the solar drying method for the drying of olive oil by-products. Waste and Biomass Valorization, 7(4), 819-830. https://doi.org/10.1007/s12649-016-9505-5

  • McAdams, B., von Massow, M., Gallant, M., & Hayhoe, M. A. (2019). A cross industry evaluation of food waste in restaurants. Journal of Foodservice Business Research, 22(5), 449-466. https://doi.org/10.1080/15378020.2019.1637220

  • Melikoglu, M., Lin, C. S. K., & Webb, C. (2013). Analysing global food waste problem: Pinpointing the facts and estimating the energy content. Central European Journal of Engineering, 3(2), 157-164. https://doi.org/10.2478/s13531-012-0058-5

  • Mirabella, N., Castellani, V., & Sala, S. (2014). Current options for the valorization of food manufacturing waste: A review. Journal of Cleaner Production, 65, 28-41. https://doi.org/10.1016/j.jclepro.2013.10.051

  • Nowak, D., & Jakubczyk, E. (2020). The freeze-drying of foods - The characteristic of the process course and the effect of its parameters on the physical properties of food materials. Foods, 9(10), Article 1488. https://doi.org/10.3390/foods9101488

  • O’Connor, J., Hoang, S. A., Bradney, L., Rinklebe, J., Kirkham, M. B., & Bolan, N. S. (2022). Value of dehydrated food waste fertiliser products in increasing soil health and crop productivity. Environmental Research, 204, Article 111927. https://doi.org/10.1016/j.envres.2021.111927

  • O’Connor, J., Hoang, S. A., Bradney, L., Dutta, S., Xiong, X., Tsang, D. C. W., Ramadass, K . Vinu, A., Kirkham, M. B., & Bolan, N. S. (2021). A review on the valorisation of food waste as a nutrient source and soil amendment. Environmental Pollution, 272, Article 115985. https://doi.org/10.1016/j.envpol.2020.115985

  • Obi, O. F., Ezeoha, S. L., & Egwu, C. O. (2016). Evaluation of air oven moisture content determination procedures for pearl millet (Pennisetum glaucum L.). International Journal of Food Properties, 19(2), 454-466. https://doi.org/10.1080/10942912.2015.1038566

  • Palaniveloo, K., Amran, M. A., Norhashim, N. A., Mohamad-Fauzi, N., Peng-Hui, F., Hui-Wen, L., Kai-Lin, Y., Jiale, L., Chisn-Yee, M. G., Jing-Yi, L., Gunasekaran, B., Razak, S. A. (2020). Food waste composting and microbial community structure profiling. Processes, 8(6), 1-30. https://doi.org/10.3390/pr8060723

  • Papanikola, K., Papadopoulou, K., Tsiliyannis, C., Fotinopoulou, I., Katsiampoulas, A., Chalarakis, E., Georgiopoulou, M., Rontogianni, V., Michalopoulos, I., Mathioudakis, D., Lytras, G. M., & Lyberatos, G. (2019). Food residue biomass product as an alternative fuel for the cement industry. Environmental Science and Pollution Research, 26(35), 35555-35564. https://doi.org/10.1007/s11356-019-05318-4

  • Papargyropoulou, E., Lozano, R., K. Steinberger, J., Wright, N., & Ujang, Z. (2014). The food waste hierarchy as a framework for the management of food surplus and food waste. Journal of Cleaner Production, 76, 106-115. https://doi.org/10.1016/j.jclepro.2014.04.020

  • Pergola, M., Persiani, A., Pastore, V., Palese, A. M., Adamo, C. D., De Falco, E., & Celano, G. (2020). Sustainability assessment of the green compost production chain from agricultural waste: A case study in Southern Italy. Agronomy,10(2), Article 230. https://doi.org/10.3390/agronomy10020230

  • Rahman, M. S., & Perera, C. O. (2007). Drying and food preservation. In Handbook of food preservation (pp. 421-450). CRC Press. https://doi.org/10.1201/9781420017373-26

  • Ravindran, R., & Jaiswal, A. K. (2016). Exploitation of food industry waste for high-value products. Trends in Biotechnology, 34(1), 58-69. https://doi.org/10.1016/j.tibtech.2015.10.008

  • Sakaguchi, L., Pak, N., & Potts, M. D. (2018). Tackling the issue of food waste in restaurants: Options for measurement method, reduction and behavioral change. Journal of Cleaner Production, 180, 430-436. https://doi.org/10.1016/j.jclepro.2017.12.136

  • Sotiropoulos, A., Malamis, D., & Loizidou, M. (2015). Dehydration of domestic food waste at source as an alternative approach for food waste management. Waste and Biomass Valorization, 6(2), 167-176. https://doi.org/10.1007/s12649-014-9343-2

  • Salemdeeb, R., zu Ermgassen, E. K. H. J., Kim, M. H., Balmford, A., & Al-Tabbaa, A. (2017). Environmental and health impacts of using food waste as animal feed: a comparative analysis of food waste management options. Journal of Cleaner Production, 140, 871-880. https://doi.org/10.1016/j.jclepro.2016.05.049

  • Schroeder, J. T., Labuzetta, A. L., & Trabold, T. A. (2020). Assessment of dehydration as a commercial-scale food waste valorization strategy. Sustainability, 12(15), 1-13. https://doi.org/10.3390/su12155959

  • Silvennoinen, K., Heikkilä, L., Katajajuuri, J., & Reinikainen, A. (2015). Food waste volume and origin : Case studies in the Finnish food service sector. Waste Management, 46, 140-145. https://doi.org/10.1016/j.wasman.2015.09.010

  • Salim, N. S., Singh, A., & Raghavan, V. (2017). Potential utilization of fruit and vegetable wastes for food through drying or extraction techniques. Novel Techniques in Nutrition and Food Science, 1(2), 1-13. https://doi.org/10.31031/NTNF.2017.01.000506

  • Sotiropoulos, A., Malamis, D., Michailidis, P., Krokida, M., & Loizidou, M. (2016). Research on the drying kinetics of household food waste for developing and optimizing domestic waste drying technique. Environmental Technology, 37(8), 929-939. https://doi.org/10.1080/21622515.2015.1092588

  • Sozzi, A., Zambon, M., Mazza, G., & Salvatori, D. (2021). Fluidized bed drying of blackberry wastes: Drying kinetics, particle characterization and nutritional value of the obtained granular solids. Powder Technology, 385, 37-49. https://doi.org/10.1016/j.powtec.2021.02.058

  • Spiker, M. L., Hiza, H. A. B., Siddiqi, S. M., & Neff, R. A. (2017). Wasted food, wasted nutrients: nutrient loss from wasted food in the united states and comparison to gaps in dietary intake. Journal of the Academy of Nutrition and Dietetics, 117(7), 1031-1040. https://doi.org/10.1016/j.jand.2017.03.015

  • Sulaiman, N. F. A. R., & Ahmad, A. (2018). Save the food for a better future: A discussion on food wastage in Malaysia. International Journal of Law, Government and Communication, 3(10), 12-21.

  • Taylor, P., Ong, S. P., Law, C. L., Ong, S. P., & Law, C. L. (2011). Drying kinetics and antioxidant phytochemicals retention of salak fruit under different drying and pretreatment conditions. Drying Technology, 29(4), 429-441. https://doi.org/10.1080/07373937.2010.503332

  • Teresita, M., Villota, O., David, C., Casallas, P., Camilo, D., & Ayala, B. (2021). Composting of solid waste from the coffee milling process using trench composting and a bioreactor with the help of efficient microorganisms in the Libre University, Socorro headquarters. Ingenieria Solidaria, 17(1), 1-28. https://doi.org/10.16925/2357-6014.2021.01.05

  • Thani, N. M., Kamal, S. M. M., Sulaiman, A., Taip, F. S., Omar, R., & Izhar, S. (2020). Sugar recovery from food waste via sub-critical water treatment. Food Reviews International, 36(3), 241-257. https://doi.org/10.1080/87559129.2019.1636815

  • Tiquia, S. M. (2005). Microbiological parameters as indicators of compost maturity. Journal of Applied Microbiology, 99(4), 816-828. https://doi.org/10.1111/j.1365-2672.2005.02673.x

  • Tony, M. A., & Tayeb, A. M. (2011, November 14-16). The use of solar energy in a low-cost drying system for solid waste management: Concept, design and performance analysis. In Eurasia Waste Management Symposium (pp. 14-16). Istanbul, Turkey.

  • Toundou, O., Pallier, V., Feuillade-Cathalifaud, G., & Tozo, K. (2021). Impact of agronomic and organic characteristics of waste composts from togo on Zea mays L. nutrients contents under water stress. Journal of Environmental Management, 285, Article 112158. https://doi.org/10.1016/j.jenvman.2021.112158

  • Tun, M. M., & Juchelková, D. (2019). Drying methods for municipal solid waste quality improvement in the developed and developing countries: A review. Environmental Engineering Research, 24(4), 529-542. https://doi.org/10.4491/eer.2018.327

  • Twain, M. (2020). Soil pH and soil acidity. In Roughing It (pp. 107-115). University of California Press. https://doi.org/10.1525/9780520948068-019.

  • Vakalis, S., Moustakas, K., Semitekolos, D., Novakovic, J., Malamis, D., Zoumpoulakis, L., & Loizidou, M. (2018). Introduction to the concept of particleboard production from mixtures of sawdust and dried food waste. Waste and Biomass Valorization, 9(12), 2373-2379. https://doi.org/10.1007/s12649-018-0214-0

  • Venkatachalam, S. K., Vellingri, A. T., & Selvaraj, V. (2020). Low-temperature drying characteristics of mint leaves in a continuous-dehumidified air drying system. Journal of Food Process Engineering, 43(4), 1-15. https://doi.org/10.1111/jfpe.13384

  • Wang, H., Zhang, M., & Adhikari, B. (2014). Food and bioproducts processing drying of shiitake mushroom by combining freeze-drying and mid-infrared radiation. Food and Bioproducts Processing, 94, 507-517. https://doi.org/10.1016/j.fbp.2014.07.008

  • Wang, J., Xiong, Y. S., & Yu, Y. (2004). Microwave drying characteristics of potato and the effect of different microwave powers on the dried quality of potato. European Food Research and Technology, 219(5), 500-506. https://doi.org/10.1007/s00217-004-0979-1

  • Wang, L., Li, Y., Prasher, S. O., Yan, B., Ou, Y., Cui, H., & Cui, Y. (2019). Organic matter, a critical factor to immobilize phosphorus, copper, and zinc during composting under various initial C/N ratios. Bioresource Technology, 289, Article 121745. https://doi.org/10.1016/j.biortech.2019.121745

  • Wheeler Jr, R. R., Hadley, N. M., Dahl, R. W., Williams, T. W., Zavala Jr, D. B., Akse, J. R., & Fisher, J. W. (2007). Microwave enhanced freeze drying of solid waste. Journal of Aerospace, 116(1), 510-537. https://doi.org/10.4271/2007-01-3266

  • Zaha, C., Dumitrescu, L., & Manciulea, I. (2013). Correlations between composting conditions and characteristics of compost as biofertilizer. Bulletin of the Transilvania University of Brasov Engineering Sciences Series 1, 6(1), 51-58.

  • Zaki, A. H. (2019, September 29). Waste not, want not - It’s time we get serious about food waste. New Straits Times. https://www.nst.com.my/lifestyle/sunday-vibes/2019/09/525506/waste-not-want-not-%E2%80%93-its-time-we-get-serious-about-food-waste

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

J

Download Full Article PDF

Share this article

Recent Articles