PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Ahmadi, M., Behzad, T., Bagheri, R., & Heidarian, P. (2018). Effect of cellulose nanofibers and acetylated cellulose nanofibers on the properties of low-density polyethylene/thermoplastic starch blends. Polymer International, 67(8), 993-1002. https://doi.org/10.1002/pi.5592

  • Akshaya, E. M., Palaniappan, R., Sowmya, C. F., Rasana, N., & Jayanarayanan, K. (2020). Properties of blends from polypropylene and recycled polyethylene terephthalate using a compatibilizer. Materials Today: Proceedings, 24, 359-368. https://doi.org/10.1016/j.matpr.2020.04.287

  • Al-Salem, S. M., & Khan, A. R. (2015). Degradation kinetic parameter determination of blends containing polyethylene terephthalate (PET) and other polymers with nanomaterials. In Poly(Ethylene Terephthalate) Based Blends, Composites and Nanocomposites (pp. 167-194). Elsevier Inc. https://doi.org/10.1016/B978-0-323-31306-3.00009-9

  • Alnaimi, S., Elouadi, B., & Kamal, I. (2015, September 13-19). Structural, thermal and morphology characteristics of low density polyethylene produced by QAPCO. In Proceedings of the 8th International Symposium on Inorganic Phosphate Materials (pp. 13-19). Agadir, Morocco.

  • Amigo, N., Palza, H., Canales, D., Sepúlveda, F., Vasco, D. A., Sepúlveda, F., & Zapata, P. A. (2019). Effect of starch nanoparticles on the crystallization kinetics and photodegradation of high density polyethylene. Composites Part B: Engineering, 174, Article 106979. https://doi.org/10.1016/j.compositesb.2019.106979

  • Andonegi, M., Irastorza, A., Izeta, A., de la Caba, K., & Guerrero, P. (2020). Physicochemical and biological performance of aloe vera-incorporated native collagen films. Pharmaceutics, 12(12), Article 1173. https://doi.org/10.3390/pharmaceutics12121173

  • Callahan, C. (2020). Understanding the importance of crystallization processes. Contract PHARMA.

  • Chandra, R., & Rustgi, R. (1997). Biodegradation of maleated linear low-density polyethylene and starch blends. Polymer Degradation and Stability, 56(2), 185-202. https://doi.org/10.1016/S0141-3910(96)00212-1

  • Chaos, A., Sangroniz, A., Gonzalez, A., Iriarte, M., Sarasua, J. R., del Río, J., & Etxeberria, A. (2019). Tributyl citrate as an effective plasticizer for biodegradable polymers: effect of plasticizer on free volume and transport and mechanical properties. Polymer International, 68(1), 125-133. https://doi.org/10.1002/pi.5705

  • Diyana, Z. N., Jumaidin, R., Selamat, M. Z., Ghazali, I., Julmohammad, N., Huda, N., & Ilyas R. A. (2021). Physical properties of thermoplastic starch derived from natural resources and its blends: A review. Polymers, 13, Article 1396. https://doi.org/10.3390/polym13091396

  • Domene-López, D., García-Quesada, J. C., Martin-Gullon, I., & Montalbán, M. G. (2019). Influence of starch composition and molecular weight on physicochemical properties of biodegradable films. Polymers, 11(7), 1-17. https://doi.org/10.3390/polym11071084

  • Garavand, F., Rouhi, M., Razavi, S. H., Cacciotti, I., & Mohammadi, R. (2017). Improving the integrity of natural biopolymer films used in food packaging by crosslinking approach: A review. International Journal of Biological Macromolecules, 104, 687-707. https://doi.org/10.1016/j.ijbiomac.2017.06.093

  • Ghatge, S., Yang, Y., Ahn, J. H., & Hur, H. G. (2020). Biodegradation of polyethylene: A brief review. Applied Biological Chemistry, 63(27), 1-14. https://doi.org/10.1186/s13765-020-00511-3

  • Gupta, M. K. (2018). Water absorption and its effect on mechanical properties of sisal composite. Journal of the Chinese Advanced Materials Society, 6(4), 561-572. https://doi.org/10.1080/22243682.2018.1522600

  • Gutiérrez, T. J., & Álvarez, K. (2016). Physico-chemical properties and in vitro digestibility of edible films made from plantain flour with added Aloe vera gel. Journal of Functional Foods, 26, 750-762. https://doi.org/10.1016/j.jff.2016.08.054

  • Habitante, A. M. B. Q., Sobral, P. J. A., Carvalho, R. A., Solorza-Feria, J., & Bergo, P. V. A. (2008). Phase transitions of cassava starch dispersions prepared with glycerol solutions. Journal of Thermal Analysis and Calorimetry, 93(2), 599-604. https://doi.org/10.1007/s10973-007-8950-6

  • Hammache, Y., Serier, A., & Chaoui, S. (2020). The effect of thermoplastic starch on the properties of polypropylene/high density polyethylene blend reinforced by nano-clay. Materials Research Express, 7, Article 025308. https://doi.org/10.1088/2053-1591/ab7270

  • Hazrol, M. D., Sapuan, S. M., Zainudin, E. S., Zuhri, M. Y. M., & Wahab, N. I. A. (2021). Corn starch (Zea mays) biopolymer plastic reaction in combination with sorbitol and glycerol. Polymers, 13(242), 1-22. https://doi.org/https://doi.org/ 10.3390/polym13020242

  • Hohne, G. W. H., Hemminger, W. F., & Flammersheim, H. J. (2003). Differential scanning calorimetry (2nd Ed.). Springer. https://doi.org/10.3139/9781569906446.007

  • Kaboorani, A., Gray, N., Hamzeh, Y., Abdulkhani, A., & Shirmohammadli, Y. (2021). Tailoring the low-density polyethylene-thermoplastic starch composites using cellulose nanocrystals and compatibilizer. Polymer Testing, 93, Article 107007. https://doi.org/10.1016/j.polymertesting.2020.107007

  • Kamarudin, S. H., Jusoh, E. R., Abdullah, L. C., Ismail, M. H. S., Aung, M. M., & Ratnam, C. T. (2019). Thermal and dynamics mechanical analysis of polypropylene blown films with crude palm oil as plasticizer. Indonesian Journal of Chemistry, 19(3), 545-555. https://doi.org/10.22146/ijc.30460

  • Karim, S. F. A., Jai, J. B., Hamid, K. H. K., & Jalil, A. W. A. (2020). Characteristics and mechanical properties changes due to incorporation of aloe vera in polyethylene-based film. Scientific Research Journal, 17(2), 61-80. https://doi.org/10.24191/srj.v17i2.9837

  • Kanatt, S. R., & Makwana, S. H. (2020). Development of active, water-resistant carboxymethyl cellulose-poly vinyl alcohol-Aloe vera packaging film. Carbohydrate Polymers, 227, Article 115303. https://doi.org/10.1016/j.carbpol.2019.115303

  • Karim, S. F. A., Hamzah, N. A. N., Aziz, R. A. A., & Ibrahim, U. K. (2020). The effect of plasticizers towards the characteristics of methylcellulose film packaging. In IOP Conference Series: Materials Science and Engineering (Vol. 845, No. 1, p. 012017). IOP Publishing. https://doi.org/10.24191/srj.v17i2.9837

  • Karim, S. F. A., Jai, J., Hamid, K. H. K., & Irfan, M. A. (2021). Characterization of polyethylene-starch based film at a different percentage of crude palm oil and Aloe vera gel. In IOP Conference Series: Materials Science and Engineering (Vol. 1053, No. 1, p. 012039). IOP Publishing. https://doi.org/10.1088/1757-899x/1053/1/012039

  • Khoramnejadian, S. (2013). Microbial degradation of starch based polypropylene. Journal of Pure and Applied Microbiology, 7(4), 2857-2860.

  • Khoshgozaran-Abras, S., Azizi, M. H., Hamidy, Z., & Bagheripoor-Fallah, N. (2012). Mechanical, physicochemical and color properties of chitosan based-films as a function of Aloe vera gel incorporation. Carbohydrate Polymers, 87(3), 2058-2062. https://doi.org/10.1016/j.carbpol.2011.10.020

  • Kormin, S., Kormin, F., & Beg, M. D. H. (2019). Effect of plasticizer on physical and mechanical properties of ldpe/sago starch blend. In Journal of Physics: Conference Series (Vol. 1150, No. 1, p. 012032). IOP Publishing. https://doi.org/10.1088/1742-6596/1150/1/012032

  • Ling, P. A., Agus, A., Mohsen, A., Hanafi, I., & Azhar, A. B. (2020). Effect of soil burial on silane treated and untreated kenaf fiber filled linear low-density polyethylene/polyvinyl alcohol composites. Bioresources, 15(4), 8648-8661. https://doi.org/10.15376/biores.15.4.8648-8661

  • Maulida, Siagian, M., & Tarigan, P. (2016). Production of starch based bioplastic from cassava peel reinforced with microcrystalline celllulose Avicel PH101 using sorbitol as plasticizer. In Journal of Physics: Conference Series (Vol. 710, No. 1, p. 012012). IOP Publishing. https://doi.org/10.1088/1742-6596/710/1/012012

  • Mazerolles, T., Heuzey, M. C., Soliman, M., Martens, H., Kleppinger, R., & Huneault, M. A. (2019). Development of co-continuous morphology in blends of thermoplastic starch and low-density polyethylene. Carbohydrate Polymers, 206, 757-766. https://doi.org/10.1016/j.carbpol.2018.11.038

  • Mazerolles, T., Heuzey, M. C., Soliman, M., Martens, H., Kleppinger, R., & Huneault, M. A. (2020). Development of multilayer barrier films of thermoplastic starch and low-density polyethylene. Journal of Polymer Research, 27(2), 1-15. https://doi.org/10.1007/s10965-020-2015-y

  • Mierzwa-Hersztek, M., Gondek, K., & Kopeć, M. (2019). Degradation of polyethylene and biocomponent-derived polymer materials: An overview. Journal of Polymers and the Environment, 27(3), 600-611. https://doi.org/10.1007/s10924-019-01368-4

  • Nizam, N. H. M., Rawi, N. F. M., Ramle, S. F. M., Aziz, A. A., Abdullah, C. K., Rashedi, A., & Kassim, M. H. M. (2021). Physical, thermal, mechanical, antimicrobial and physicochemical properties of starch based film containing aloe vera: A review. Journal of Materials Research and Technology, 15, 1572-1589. https://doi.org/10.1016/j.jmrt.2021.08.138

  • Nguyen, D. M., Do, T. V. V., Grillet, A. C., Thuc, H. H., & Thuc, C. N. H. (2016). Biodegradability of polymer film based on low density polyethylene and cassava starch. International Biodeterioration and Biodegradation, 115, 257-265. https://doi.org/10.1016/j.ibiod.2016.09.004

  • Obasi, H. C., Egeolu, F., & Ezenwajiaku, H. (2020). Effects of starch content and compatibilizer on the mechanical, water absorption and biodegradable properties of potato starch filled polypropylene blends. Quantum Journal of Environmental Studies, 1(1), 32-43.

  • Panrong, T., Karbowiak, T., & Harnkarnsujarit, N. (2020). Effects of acetylated and octenyl-succinated starch on properties and release of green tea compounded starch/LLDPE blend films. Journal of Food Engineering, 284, Article 110057. https://doi.org/10.1016/j.jfoodeng.2020.110057

  • Patnaik, S., Panda, A. K., & Kumar, S. (2020). Thermal degradation of corn starch based biodegradable plastic plates and determination of kinetic parameters by isoconversional methods using thermogravimetric analyzer. Journal of the Energy Institute, 93(4), 1449-1459. https://doi.org/10.1016/j.joei.2020.01.007

  • Pereira, R., Mendes, A., & Bártolo, P. (2013). Alginate/Aloe vera hydrogel films for biomedical applications. Procedia CIRP, 5, 210-215. https://doi.org/10.1016/j.procir.2013.01.042

  • Quispe, M. M., Lopez, O. V., Boina, D. A., Stumbé, J. F., & Villar, M. A. (2021). Glycerol-based additives of poly(3-hydroxybutyrate) films. Polymer Testing, 93, 107005. https://doi.org/10.1016/j.polymertesting.2020.107005

  • Radfar, R., Hosseini, H., Farhoodi, M., Ghasemi, I., Średnicka-Tober, D., Shamloo, E., & Khaneghah, A. M. (2020). Optimization of antibacterial and mechanical properties of an active LDPE/starch/nanoclay nanocomposite film incorporated with date palm seed extract using D-optimal mixture design approach. International Journal of Biological Macromolecules, 158, 790-799. https://doi.org/10.1016/j.ijbiomac.2020.04.139

  • Ramírez-Hernández, A., Hernández-Mota, C. E., Páramo-Calderón, D. E., González-García, G., Báez-García, E., Rangel-Porras, G., Vargas-Torres, A., & Aparicio-Saguilán, A. (2020). Thermal, morphological and structural characterization of a copolymer of starch and polyethylene. Carbohydrate Research, 488, Article 107907. https://doi.org/10.1016/j.carres.2020.107907

  • Ramlee, N. A., & Tominaga, Y. (2019). Mechanical and degradation properties in alkaline solution of poly(ethylene carbonate)/poly(lactic acid) blends. Polymer, 166, 44-49. https://doi.org/10.1016/j.polymer.2019.01.043

  • Reddy, N., & Yang, Y. (2010). Citric acid cross-linking of starch films. Food Chemistry, 118(3), 702-711. https://doi.org/10.1016/j.foodchem.2009.05.050

  • Ribba, L., Garcia, N. L., D’Accorso, N., & Goyanes, S. (2017). Disadvantages of starch-based materials, feasible alternatives in order to overcome these limitations. In Starch-based materials in food packaging (pp. 37-76). Academic Press. https://doi.org/10.1016/B978-0-12-809439-6.00003-0

  • Sabetzadeh, M., Bagheri, R., & Masoomi, M. (2015). Study on ternary low density polyethylene/linear low density polyethylene/thermoplastic starch blend films. Carbohydrate Polymers, 119, 126-133. https://doi.org/10.1016/j.carbpol.2014.11.038

  • Sabetzadeh, M., Bagheri, R., & Masoomi, M. (2017). Morphology and rheological properties of compatibilized low-density polyethylene/linear low-density polyethylene/thermoplastic starch blends. Journal of Applied Polymer Science, 134(16), Article 44719. https://doi.org/10.1002/app.44719

  • Samarth, N. B., & Mahanwar, P. A. (2015). Modified vegetable oil based additives as a future polymeric material - Review. Open Journal of Organic Polymer Materials, 05(01), 1-22. https://doi.org/10.4236/ojopm.2015.51001

  • Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2015). Effect of plasticizer type and concentration on tensile, thermal and barrier properties of biodegradable films based on sugar palm (Arenga pinnata) starch. Polymers, 7(6), 1106-1124. https://doi.org/10.3390/polym7061106

  • Sessini, V., Arrieta, M. P., Raquez, J., Dubois, P., Kenny, M., & Peponi, L. (2019). Thermal and composting degradation of EVA / Thermoplastic starch blends and their nanocomposites. Polymer Degradation and Stability, 159, 184-198. https://doi.org/10.1016/j.polymdegradstab.2018.11.025

  • Surjushe, A., Vasani, R., & Saple, D. G. (2008). Aloe vera: A short review. Indian Journal of Dermatology, 53(4), 163-166. https://doi.org/10.4103/0019-5154.44785

  • Taghizadeh, M. T., & Abdollahi, R. (2015). A kinetics study on the thermal degradation of starch/poly (vinyl alcohol) blend. Chemical and Materials Engineering, 3(4), 73-78. https://doi.org/10.13189/cme.2015.030402

  • Tarique, J., Sapuan, S. M., & Khalina, A. (2021). Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers. Scientific Reports, 11(1), 1-17. https://doi.org/10.1038/s41598-021-93094-y

  • Yatigala, N. S., Bajwa, D. S., & Bajwa, S. G. (2018). Compatibilization improves physico-mechanical properties of biodegradable biobased polymer composites. Composites Part A: Applied Science and Manufacturing, 107, 315-325. https://doi.org/10.1016/j.compositesa.2018.01.011

  • Zaman, H. U., & Beg, M. D. H. (2021). Study on binary low-density polyethylene (LDPE)/ thermoplastic sago starch (TPS) blend composites. Progress in Applied Science and Technology, 11(1), 53-65. https://doi.org/10.14456/past.2021.5

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

J

Download Full Article PDF

Share this article

Recent Articles