PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Apostolopoulos, I. D., & Mpesiana, T. A. (2020). Covid-19: Automatic detection from X-ray images utilizing transfer learning with convolutional neural networks. Physical and Engineering Sciences in Medicine, 43(2), 635-640. https://doi.org/10.1007/s13246-020-00865-4

  • Bustin, S. A., & Nolan, T. (2020). RT-qPCR testing of SARS-CoV-2: A primer. IInternatIonal Journal of Molecular Sciences, 21(8), Article 3004. https://doi.org/10.3390/ijms21083004

  • Cohen, J. P., Morrison, P., Dao, L., Roth, K., Duong, T. Q., & Ghassemi, M. (2020). GitHub - ieee8023/covid-chestxray-dataset: We are building an open database of COVID-19 cases with chest X-ray or CT images. Retrieved March 22, 2021, from https://github.com/ieee8023/COVID-chestxray-dataset

  • He, X., Yang, X., Zhang, S., Zhao, J., Zhnag, Y., Xing, E., & Xie, P. (2020). Sample-efficient deep learning for COVID-19 diagnosis based on CT scans. Retrieved March 22, 2021, from https://github.com/UCSD-AI4H/COVID-CT

  • Hemdan, E. E. D., Shouman, M. A., & Karar, M. E. (2020). COVIDX-Net: A framework of deep learning classifiers to diagnose COVID-19 in X-ray images. ArXiv, 1-14.

  • Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … & Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5

  • Luo, L., Xiong, Y., Liu, Y., & Sun, X. (2019). Adaptive gradient methods with dynamic bound of learning rate. ArXiv:1902.09843, 2018, 1-19.

  • Ozturk, T., Talo, M., Yildirim, E. A., Baloglu, U. B., Yildirim, O., & Acharya, U. R. (2020). Automated detection of COVID-19 cases using deep neural networks with X-ray images. Computers in Biology and Medicine, 121, Article 103792. https://doi.org/10.1016/j.compbiomed.2020.103792

  • Purohit, K., Kesarwani, A., Kisku, D. R., & Dalui, M. (2020). COVID-19 detection on chest X-Ray and CT scan images using multi-image augmented deep learning model. BioRxiv, 15-22. https://doi.org/10.1101/2020.07.15.205567

  • Riedmiller, M., & Braun, H. (1993). A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In IEEE international conference on neural networks (pp. 586-591). IEEE Conference Publication. https://doi.org/10.1109/ICNN.1993.298623

  • Salehi, S., Abedi, A., Balakrishnan, S., & Gholamrezanezhad, A. (2020). Coronavirus disease 2019 (COVID-19): A systematic review of imaging findings in 919 patients. American Journal of Roentgenology, 215(1), 87-93. https://doi.org/10.2214/AJR.20.23034

  • Saufi, S. R., Ahmad, Z. A., Leong, M. S., & Lim, M. H. (2019). Challenges and opportunities of deep learning models for machinery fault detection and diagnosis: A review. IEEE Access, 7(1), 122644-122662. https://doi.org/10.1109/ACCESS.2019.2938227

  • Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15, 1929-1958. https://doi.org/10.1214/12-AOS1000

  • Tharwat, A. (2018). Classification assessment methods. Applied Computing and Informatics, 17(1), 168-192. https://doi.org/10.1016/j.aci.2018.08.003

  • Verstraete, D., Ferrada, A., Droguett, E. L., Meruane, V., & Modarres, M. (2017). Deep learning enabled fault diagnosis using time-frequency image analysis of rolling element bearings. Hindawi Shock and Vibration, 2017, 1-29. https://doi.org/10.1155/2017/5067651

  • Wahab, M. N. A., Nefti-Meziani, S., & Atyabi, A. (2015). A comprehensive review of swarm optimization algorithms. PLoS ONE, 10(5), 1-36. https://doi.org/10.1371/journal.pone.0122827

  • Wang, S., Kang, B., Ma, J., Zeng, X., Xiao, M., Guo, J., Cai, M., Yang, J., Li, Y., Meng, X., & Xu, B. (2020). A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19). MedRxiv, 1-23. https://doi.org/https://doi.org/10.1101/2020.02.14.20023028

  • Wang, Y., Liu, M., Bao, Z., & Zhang, S. (2018). Stacked sparse autoencoder with PCA and SVM for data-based line trip fault diagnosis in power systems. Neural Computing and Applications, 5, 1-13. https://doi.org/10.1007/s00521-018-3490-5

  • Ying, S., Zheng, S., Li, L., Zhang, X., Zhang, X., Huang, Z., Chen, J., Zhao, H., Wang, R., Chong, Y., Shen, J., Zha, Y., & Yang, Y. (2020). Deep learning enables accurate diagnosis of novel Coronavirus (COVID-19) with CT images. MedRxiv, 1-10. https://doi.org/10.1101/2020.02.23.20026930

  • Yang, W., Sirajuddin, A., Zhang, X., Liu, G., Teng, Z., Zhao, S., & Lu, M. (2020). The role of imaging in 2019 novel coronavirus pneumonia (COVID-19). European Radiology, 30, 4874-4882. https://doi.org/10.1007/s00330-020-06827-4

  • Yang, X., He, X., Zhao, J., Zhang, Y., Zhang, S., & Xie, P. (2020). COVID-CT-dataset: A CT scan dataset about COVID-19. ArXiv Preprint ArXiv:2003.13865, 1-14.

  • Zheng, C., Deng, X., Fu, Q., Zhou, Q., Feng, J., Ma, H., Liu, W., & Wang, X. (2020). Deep learning-based detection for COVID-19 from chest CT using weak label. MedRxiv, 1-13. https://doi.org/10.1101/2020.03.12.20027185

  • Zu, Z. Y., Jiang, M. D., Xu, P. P., Chen, W., Ni, Q. Q., Lu, G. M., & Zhang, L. J. (2020). Coronavirus disease 2019 (COVID-19): A perspective from China. Radiology, 296(2), E15-E25. https://doi.org/10.1148/radiol.2020200490

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

J

Download Full Article PDF

Share this article

Recent Articles