PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Pre-Press / JTAS-3010-2024

 

Effect of Different Drying Methods on Colour, Total Phenolic Content, Flavonoid Content, and Antioxidant Activity Retention of Strobilanthes crispus Leaves

Iman Nur Sabrina Norasmadi, Nurain Nabilah Zulkipli, Suhaizan Lob, Wan Zawiah Wan Abdullah, Mohd Fauzi Jusoh and Aidilla Mubarak

Pertanika Journal of Tropical Agricultural Science, Pre-Press

DOI: https://doi.org/10.47836/pjtas.47.4.07

Keywords: Bioactive compounds, leaves drying methods, medicinal plant, microwave drying, phytochemicals, Strobilanthes crispus

Published: 2024-10-02

Strobilanthes crispus, a medicinal herb, is recognised for its abundant phytochemicals, notably in its leaves, contributing to its high antioxidant activity. However, the crucial step of drying, aimed at extending shelf life, can impact the stability of these bioactive compounds. This study evaluates the impact of different drying methods, which include oven, microwave, freeze drying, and air drying, on the colour, phenolic and flavonoid content, and antioxidant activities of S. crispus leaves. The colour analysis of the fresh and dried leaves was assessed using the chromameter. Total phenolic content (TPC) and total flavonoid content (TFC) were determined using Folin-Ciocalteu’s and aluminium chloride colourimetric assays, respectively. Antioxidant capacities were analysed via ferric-reducing antioxidant power (FRAP) and a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. The results showed that microwave-dried S. crispus leaves exhibited minimal alterations in colour attributes L*, a*, and b*, closely resembling the fresh leaves (p > 0.05). Microwave drying significantly preserved TPC (145.42 ± 1.61 mg GAE/g), TFC (117.27 ± 5.10 mg QE/g), FRAP activity (258.92 ± 0.15 µg TE/g extract), and displayed the most potent DPPH scavenging half-maximal inhibitory concentration (7.58 ± 0.48 µg/ml) compared to other methods (p < 0.05). Notably, the DPPH scavenging potency surpassed that of the synthetic antioxidant butylated hydroxytoluene. In conclusion, microwave drying appeared to be an efficient method for preserving the colour and antioxidant properties of S. crispus leaves. It highlights its potential as a favourable drying technique for conserving bioactive compounds in medicinal plant materials, offering promising applications in the nutraceutical and pharmaceutical fields.

  • Abas, M. A., Hambali, K. A., Hassin, N. H., Karim, M. F. A., Ismail, L., & Rosli, H. (2020). Antifungal activity of selected Malaysia’s local medicinal plants against sick building syndrome (SBS) fungi. Asian Journal of Plant Sciences, 19(3), 240-245. https://doi.org/10.3923/ajps.2020.240.245

  • Adorjan, B., & Buchbauer, G. (2010). Biological properties of essential oils: An updated review. Flavour and Fragrance Journal, 25(6), 407–426. https://doi.org/10.1002/ffj.2024

  • Ahmed, F., Rahman, S., Ahmed, N., Hossain, M., Biswas, A., Sarkar, S., Banna, H., & Rahmatullah, M. (2011). Evaluation of Neolamarckia cadamba (Roxb.) bosser leaves extract on glucose tolerance in glucose-induced hyperglycemic mice. African Journal of Traditional, Complementary and Alternative Medicines, 8(1), 79–81. https://doi.org/10.4314/ajtcam.v8i1.60549

  • Al-Henhena, N., Khalifa, S. A. M., Ying, R. P. Y., Hassandarvish, P., Rouhollahi, E., Al-Wajeeh, N. S., Ali, H. M., Abdulla, M. A., & El-Seedi, H. R. (2015). Chemopreventive effects of Strobilanthes crispus leaves extract on azoxymethane-induced aberrant crypt foci in rat colon. Scientific Reports, 5, 13312. https://doi.org/10.1038/srep13312

  • Aryal, S., Baniya, M. K., Danekhu, K., Kunwar, P., Gurung, R., & Koirala, N. (2019). Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants, 8(4), 96. https://doi.org/10.3390/plants8040096

  • Babu, A. K., Kumaresan, G., Raj, V. A. A., & Velraj, R. (2018). Review of leaf drying: Mechanism and influencing parameters, drying methods, nutrient preservation, and mathematical models. Renewable and Sustainable Energy Reviews, 90, 536-556. https://doi.org/10.1016/j.rser.2018.04.002

  • Bakar, M. F. A., Teh, A. H., Rahmat, A., Othman, F., Hashim, N., & Fakurazi, S. (2006). Antiproliferative properties and antioxidant activity of various types of Strobilanthes crispus tea. International Journal of Cancer Research, 2(2), 152-158. https://doi.org/10.3923/ijcr.2006.152.158

  • Barimah, J., Yanney, P., Laryea, D., & Quarcoo, C. (2017). Effect of drying methods on phytochemicals, antioxidant activity and total phenolic content of dandelion leaves. American Journal of Food Nutrition, 5(4), 136-141. https://doi.org/10.12691/ajfn-5-4-4

  • Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70-76. https://doi.org/10.1006/abio.1996.0292

  • Bernard, D., Kwabena, A. I., Osei, O. D., Daniel, G. A., Elom, S. A., & Sandra, A. (2014). The effect of different drying methods on the phytochemicals and radical scavenging activity of Ceylon cinnamon (Cinnamomum zeylanicum) plant parts. European Journal of Medicinal Plants, 4(11), 1324-1335. https://doi.org/10.9734/EJMP/2014/11990

  • Chan, E. W., Lim, Y. Y., & Chew, Y. L. (2007). Antioxidant activity of Camellia sinensis leaves and tea from a lowland plantation in Malaysia. Food Chemistry, 102(4), 1214-1222. https://doi.org/10.1016/j.foodchem.2006.07.009

  • Chua, L. Y. W., Chua, B. L., Figiel, A., Chong, C. H., Wojdyło, A., Szumny, A., & Choong, T. S. Y. (2019). Antioxidant activity, and volatile and phytosterol contents of Strobilanthes crispus dehydrated using conventional and vacuum microwave drying methods. Molecules, 24(7), 1397. https://doi.org/10.3390/molecules24071397

  • Formagio, A. S. N., Volobuff, C. R. F., Santiago, M., Cardoso, C. A. L., Vieira, M. D. C., & Pereira, Z. V. (2014). Evaluation of antioxidant activity, total flavonoids, tannins and phenolic compounds in Psychotria leaves extracts. Antioxidants, 3(4), 745-757. https://doi.org/10.3390/antiox3040745

  • Franke, A. A., Custer, L. J., Arakaki, C., & Murphy, S. P. (2004). Vitamin C and flavonoid levels of fruits and vegetables consumed in Hawaii. Journal of Food Composition and Analysis, 17(1), 1-35. https://doi.org/10.1016/S0889-1575(03)00066-8

  • Ghasemzadeh, A., Jaafar, H. Z. E., & Rahmat, A. (2015). Phytochemical constituents and biological activities of different extracts of Strobilanthes crispus (L.) Bremek leaves grown in different locations of Malaysia. BMC Complementary and Alternative Medicine, 15, 422. https://doi.org/10.1186/s12906-015-0873-3

  • Hajimehdipoor, H., Adib, N., Khanavi, M., Mobli, M., Amin, G. R., & Moghadam, M. H. (2012). Comparative study on the effect of different methods of drying on phenolics content and antioxidant activity of some edible plants. International Journal of Pharmaceutical Sciences and Research, 3(10), 3712-3716.

  • Hassanbaglou, B., Hamid, A. A., Roheeyati, A. M., Saleh, N. M., Abdulamir, A., Khatib, A., & Sabu, M. C. (2012). Antioxidant activity of different extracts from leaves of Pereskia bleo (Cactaceae). Journal of Medicinal Plants Research, 6(15), 2932-2937. https://doi.org/10.5897/JMPR11.760

  • Hayat, K. (2020). Impact of drying methods on the functional properties of peppermint (Mentha piperita L.) leaves. Science Letters, 8(1), 36-42.

  • Iqbal, E., Salim, K. A., & Lim, L. B. (2015). Phytochemical screening, total phenolics and antioxidant activities of bark and leaves extracts of Goniothalamus velutinus (Airy Shaw) from Brunei Darussalam. Journal of King Saud University - Science, 27(3), 224-232. https://doi.org/10.1016/j.jksus.2015.02.003

  • Ismail, M., Manickam, E., Danial, A. M., Rahmat, A. & Yahaya, A. (2000). Chemical composition and antioxidant activity of Strobhilanthes crispus leaves extract. The Journal of Nutritional Biochemistry, 11(11-12), 536-542. https://doi.org/10.1016/S0955-2863(00)00108-X

  • Koay, Y. C., Wong, K. C., Osman, H., Eldeen, I. M. S., & Asmawi, M. Z. (2013). Chemical constituents and biological activities of Strobilanthes crispus L. Records of Natural Products, 7(1), 59-64.

  • Kuljarachanan, T., Devahastin, S., & Chiewchan, N. (2009). Evolution of antioxidant compounds in lime residues during drying. Food Chemistry, 113(4), 944-949. https://doi.org/10.1016/j.foodchem.2008.08.026

  • Lasano, N. F., Rahmat, A., Ramli, N. S., & Bakar, M. F. A. (2018). Effect of oven and microwave drying on polyphenols content and antioxidant capacity of herbal tea from Strobilanthes crispus leaves. Asian Journal of Pharmaceutical and Clinical Research, 11(6), 363-368. https://doi.org/10.22159/ajpcr.2018.v11i6.24660

  • Liza, M. S., Rahman, R. A., Mandana, B., Jinap, S., Rahmat, A., Zaidul, I. S. M., & Hamid, A. (2010). Supercritical carbon dioxide extraction of bioactive flavonoid from Strobilanthes crispus (Pecah Kaca). Food and Bioproducts Processing, 88(2-3), 319-326. https://doi.org/10.1016/j.fbp.2009.02.001

  • Mohd Fadzelly, A. B., Asmah, R., & Fauziah, O. (2006). Effects of Strobilanthes crispus tea aqueous extracts on glucose and lipid profile in normal and streptozotocin-induced hyperglycemic rats. Plant Foods for Human Nutrition, 61, 6-11. https://doi.org/10.1007/s11130-006-0002-z

  • Muskhazli, M., Dirnahayu, M., Nor Azwady A. A., Nurhafiza, Y., Nor Dalilah, E., & Che Ku Nurshaira, C. K. N. (2009). Antibacterial activity of methanolic crude extracts from selected plant against Bacillus cereus. Pertanika Journal of Tropical Agricultural Science, 32(2), 175-183.

  • Nantitanon, W., Yotsawimonwat, S., & Okonogi, S. (2010). Factors influencing antioxidant activities and total phenolic content of guava leaves extract. LWT - Food Science and Technology, 43(7), 1095-1103. https://doi.org/10.1016/j.lwt.2010.02.015

  • Nurraihana, H., & Norfarizan-Hanoon, N. A. (2013). Phytochemistry, pharmacology and toxicology properties of Strobilanthes crispus. International Food Research Journal, 20(5), 2045-2056.

  • Orphanides, A., Goulas, V., & Gekas, V. (2013). Effect of drying method on the phenolic content and antioxidant capacity of spearmint. Czech Journal of Food Sciences, 31(5), 509-513.

  • Park, Y.-S., Jung, S.-T., Kang, S.-G., Delgado-Licon, E., Ayala, A. L. M., Tapia, M. S., Martín-Belloso, O., Trakhtenberg, S., & Gorinstein, S. (2006). Drying of persimmons (Diospyros kaki L.) and the following changes in the studied bioactive compounds and the total radical scavenging activities. LWT - Food Science and Technology, 39(7), 748-755. https://doi.org/10.1016/j.lwt.2005.05.014

  • Pathare, P. B., Opara, U. L., & Al-Said, F. A.-J. (2013). Colour measurement and analysis in fresh and processed foods: A review. Food and Bioprocess Technology, 6, 36-60. https://doi.org/10.1007/s11947-012-0867-9

  • Payne, A. C., Mazzer, A., Clarkson, G. J. J., & Taylor, G. (2013). Antioxidant assays – Consistent findings from FRAP and ORAC reveal a negative impact of organic cultivation on antioxidant potential in spinach but not watercress or rocket leaves. Food Science and Nutrition, 1(6), 439-444. https://doi.org/10.1002/fsn3.71

  • Poós, T., & Varju, E. (2017). Drying characteristics of medicinal plants. International Review of Applied Sciences and Engineering, 8(1), 83-91. https://doi.org/10.1556/1848.2017.8.1.12

  • Roshanak, S., Rahimmalek, M., & Goli, S. A. H. (2016). Evaluation of seven different drying treatments in respect to total flavonoid, phenolic, vitamin C content, chlorophyll, antioxidant activity and color of green tea (Camellia sinensis or C. assamica) leaves. Journal of Food Science and Technology, 53, 721-729. https://doi.org/10.1007/s13197-015-2030-x

  • Rubinskienė, M., Viškelis, P., Dambrauskienė, E., Viškelis, J., & Karklelienė, R. (2015). Effect of drying methods on the chemical composition and colour of peppermint (Mentha× piperita L.) leaves. Zemdirbyste-Agriculture, 102(2), 223-228. https://doi.org/10.13080/z-a.2015.102.029

  • Tezcan, D., Sabancı, S., Cevik, M., Cokgezme, O. F., & Icier, F. (2021). Infrared drying of dill leaves: Drying characteristics, temperature distributions, performance analyses and colour changes. Food Science and Technology International, 27(1), 32-45. https://doi.org/10.1177/1082013220929142

  • Thamkaew, G., Sjöholm, I., & Galindo, F. G. (2021). A review of drying methods for improving the quality of dried herbs. Critical Reviews in Food Science and Nutrition, 61(11), 1763-1786. https://doi.org/10.1080/10408398.2020.1765309

  • Yao, L., Jiang, Y., Datta, N., Singanusong, R., Liu, X., Duan, J., Raymont, K., Lisle, A., & Xu, Y. (2004). HPLC analyses of flavanols and phenolic acids in the fresh young shoots of tea (Camellia sinensis) grown in Australia. Food Chemistry, 84(2), 253-263. https://doi.org/10.1016/S0308-8146(03)00209-7

  • Zayed, M. Z., Ahmad, F. B., Ho, W.-S., & Pang, S.-L. (2014). GC-MS analysis of phytochemical constituents in leaves extracts of Neolamarckia cadamba (Rubiaceae) from Malaysia. International Journal of Pharmacy and Pharmaceutical Sciences, 6(9), 123-127.

  • Zheng, W., & Wang, S. Y. (2001). Antioxidant activity and phenolic compounds in selected herbs. Journal of Agricultural and Food Chemistry, 49(11), 5165-5170. https://doi.org/10.1021/jf010697n