PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Pre-Press / JTAS-2922-2023

 

Genetic Diversity of Indonesian Pineapple (Ananas comosus (L.) Merr.) Cultivars Based on ISSR Markers

Risyda Hayati and Rina Sri Kasiamdari

Pertanika Journal of Tropical Agricultural Science, Pre-Press

DOI: https://doi.org/10.47836/pjtas.47.4.02

Keywords: Ananas comosus, cultivar, Indonesia, ISSR, phenetic relationship

Published: 2024-09-27

Pineapple (Ananas comosus (L.) Merr.) is the third-most important tropical fruit traded and widely cultivated in Indonesia with various cultivars. This study identifies genetic diversity and determines the phenetic relationship of nine pineapple accessions based on inter-simple sequence repeat (ISSR) markers. Four ISSR primers were utilized for genetic diversity analysis and diversity relationships using POPGENE 1.31 and MVSP 3.2 to form a dendrogram. The results showed that nine pineapple accessions revealed the successful amplification of 50 DNA bands, 46 polymorphic, with a percentage average of 89.38%. The calculation result of the effective alleles (Ne), Nei’s gene diversity (h), Shannon information index (I), and polymorphism information content (PIC) showed that ISSR 1 had the highest value and ISSR 16 had the lowest value. The average of the Ne value was 1.44; the average of h was 0.28, which indicated low genetic variation; the average of (I) was 0.43, which indicated that not all groups had the same frequency; the averages of the PIC value of 0.28 which showed that the four ISSR primers used were somewhat informative. The results of the phenetic relationship based on ISSR molecular markers showed two clusters that separated the accession of ‘Spanish’ from the accession of ‘Queen’ and ‘Cayenne.’ This resulting study showed that ISSR analysis was suitable for studying genetic diversity among pineapple cultivars.

  • Amda, P. P. E., Hanfiah, D. S., & Kadhinata, E. H. (2020). Karakterisasi morfologis dan hubungan kekerabatan tanaman nanas (Ananas comosus (L.) Merr.) di Kabupaten Kampar dan Siak Provinsi Riau [Morphological characterization and relationships of pineapple (Ananas comosus (L.) Merr.) in Kampar and Siak Districts, Riau Province]. Rhizobia, 2(2), 134–144. https://doi.org/10.36985/rhizobia.v9i2.313

  • Aradhya, M. K., Zee, F., & Manshardt, R. M. (1994). Isozyme variation in cultivated and wild pineapple. Euphytica, 79, 87–99. https://doi.org/10.1007/BF00023580

  • Arif, M. F., Subositi, D., Sari, A. N., Aristya, G. R., Lesmana, I., & Kasiamdari, R. S. (2020). Genetic Diversity of green chireta (Andrographis paniculata (Burm.f.) Wall. Ex Nees.) from Indonesia based on ISSR and RAPD markers. Malaysian Applied Biology, 49(1), 61–68. https://doi.org/10.55230/mabjournal.v49i1.1655

  • Bilodeau, G. J., Koike, S. T., Uribe, P., & Martin, F. N. (2012). Development of an assay for rapid detection and quantification of Verticillium dahliae in soil. Phytopathology, 102(3), 331–343. https://doi.org/10.1094/PHYTO-05-11-0130

  • Badan Pusat Statistik Provinsi Jawa Tengah. (2022). Produksi buah-buahan dan sayuran tahunan menurut jenis tanaman di Provinsi Jawa Tengah, 2020-2021 [Annual fruit and vegetable production by plant type in Central Java Province, 2020-2021]. https://jateng.bps.go.id/statictable/2022/03/15/2540/produksi-buah-buahan-menurut-kabupaten-kota-dan-jenis-tanaman-di-provinsi-jawa-tengah-2020---2021.html

  • Badan Pusat Statistik Provinsi Riau. (2023). Statistika tanaman sayuran dan buah-buahan Provinsi Riau [Statistics of vegetable and fruit crops in Riau Province]. https://riau.bps.go.id/publication/2023/09/19/6e9fe2a414c109c867b98727/statistik-tanaman-sayuran-dan-buah-buahan-provinsi-riau-2022.html

  • Budianingsih, L., Hadi, S., & Edwina, S. (2017). Agribisnis nenas di Kecamatan Tambang Kabupaten Kampar [Pineapple agribusiness in Tambang District, Kampar Regency]. Jurnal Online Mahasiswa Fakultas Pertanian Universitas Riau, 4(1), 1–11.

  • De Riek, J., Calsyn, E., Everaert, I., Van Bockstaele, E., & De Loose, M. (2001). AFLP based alternatives for the assessment of distinctness, uniformity and stability of sugar beet varieties. Theoretical and Applied Genetics, 103, 1254–1265. https://doi.org/10.1007/s001220100710

  • Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19(1), 11–15.

  • Gholami, S., Vafaee, Y., Nazari, F., & Ghorbani, A. (2021). Molecular characterization of endangered iranian terrestrial orchids using ISSR markers and association with floral and tuber-related phenotypic traits. Physiology and Molecular Biology of Plants, 27, 53–68. https://doi.org/10.1007/s12298-020-00920-0

  • Godwin, I. D., Aitken, E. A. B., & Smith, L. W. (1997). Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis, 18(9), 1524–1528. https://doi.org/10.1002/elps.1150180906

  • Hadiati, S., Prihatini, R., & Mansyah, E. (2018). Identifikasi molekuler dan analisis kekerabatan aksesi nenas menggunakan marka RAPD menunjang perakitan varietas unggul baru [Molecular identification and relationships among several pineapple accessions using RAPD marker to support the assembling new varieties]. Jurnal Hortikultura, 28(1), 1–12. https://doi.org/10.21082/jhort.v28n1.2018.p1-12

  • Harahap, F., Afiva, A., Jannah, M., & Prasetya, E. (2021). ISSR based analysis of genetic variability of plantlets culture of pineapple (Ananas comosus L.) from Sipahutar, North Sumatera, Indonesia. Biogenesis: Jurnal Ilmiah Biologi, 9(1), 35–41. https://doi.org/10.24252/bio.v9i1.17068

  • Harahap, F., Nusyirwan, N., Afiva, A., Prasetya, E., Suriani, C., Hasibuan, R. F. M., & Poerwanto, R. (2022). Short communication: Genetic similarity analysis of in vitro cultivated pineapple (Ananas comosus) from Sipahutar, North Sumatra, Indonesia using ISSR markers. Biodiversitas, 23(11), 5623–5628. https://doi.org/10.13057/biodiv/d231111

  • Hassan, A., Othman, Z., & Siriphanich, J. (2011). Pineapple (Ananas comosus L. Merr.). In E. M. Yahia (Ed.), Postharvest biology and technology of tropical and subtropical fruits: Mangosteen to white sapote (pp. 194-218e). Woodhead Publishing. https://doi.org/10.1533/9780857092618.194

  • Hernosa, S. P., Siregar, L. A. M., Hanum, C., & Supriana, T. (2022). Morphological characterization and its relationship with preference for pineapple in Labuhan Batu Regency, Indonesia. Asian Journal of Plant Sciences, 21(3), 379–388. https://doi.org/10.3923/ajps.2022.379.388

  • Ismail, S. N., Ghani, N. S. A., Razak, S. F. A., Abidin, R. A. Z., Yusof, M. F. M., Zubir, M. N., & Zainol, R. (2020). Genetic diversity of pineapple (Ananas comosus) germplasm in Malaysia using simple sequence repeat (SSR) markers. Tropical Life Science Research, 31(3), 15–27. https://doi.org/10.21315%2Ftlsr2020.31.3.2

  • Jannah, N., Pharmawati, M., & Uslan. (2022). Genetic diversity of Sterculia quadrifida from Kupang based on ISSR profiles, stomatal density, and chlorophyll content. Biodiversitas, 23(5), 2690–2698. https://doi.org/10.13057/biodiv/d230553

  • Kaki, A., Vafaee, Y., & Khadivi, A. (2020). Genetic variation of Anacamptis coriophora, Dactylorhiza umbrosa, Himantoglossum affine, Orchis mascula, and Ophrys schulzei in the western parts of Iran. Industrial Crops and Products, 156, 112854. https://doi.org/10.1016/j.indcrop.2020.112854

  • Konopiński, M. K. (2020). Shannon diversity index: A call to replace the original Shannon’s formula with unbiased estimator in the population genetics studies. PeerJ, 8, e9391. https://doi.org/10.7717/peerj.9391

  • Martiwi, I. N. A., Nugroho, L. H., Daryono, B. S., & Susandarini, R. (2020). Morphological variability and taxonomic relationship of Sorghum bicolor (L.) Moench accessions based on qualitative characters. Annual Research and Review in Biology, 35(6), 40–52. https://doi.org/10.9734/arrb/2020/v35i630234

  • Mohamed, E.-A. A. M., Dessoky, E. S., Attia, A. O., & Hassan, M. M. (2014). Evaluation of genetic fidelity of in vitro raised plants of the important medicinal plantharmal (Rhazya Stricta Decne) using RAPD and ISSR markers. International Journal of Agricultural Science and Research, 4(3), 115–124.

  • Napitu, C. S. P. L. S., Chikmawati, T., & Djuita, N. R. (2016). Keberagaman genetik kerabat rambutan liar (Nephelium spp.) di Kabupaten Sanggau, Kalimantan Barat berdasarkan marka SSR dan ISSR [Genetic diversity of wild rambutan relatives (Nephelium spp.) in Sanggau Regency, West Kalimantan based on SSR and ISSR markers]. Floribunda, 5(4), 115–125. https://doi.org/10.32556/floribunda.v5i4.2016.12

  • Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89(3), 583–590. https://doi.org/10.1093/genetics/89.3.583

  • Pabendon, M. B., Azrai, M., Kasim, F., & Mejaya, M. J. (2007). Prospek penggunaan marka molekuler dalam program pemuliaan jagung [Prospects for the use of molecular markers in maize breeding programs]. Balitsereal.

  • Poerba, Y. S., Martanti, D., & Ahmad, F. (2019). Genetic variation of wild Musa acuminata Colla from Indonesia. BIOTROPIA, 26(2), 115–126. https://doi.org/10.11598/btb.2019.26.2.896

  • Rakoczy-Trojanowska, M., & Bolibok, H. (2004). Characteristics and a comparison of three classes of microsatellite-based markers and their application in plants. Cellular and Molecular Biology Letters, 9(2), 221–238.

  • Ramezani, H. (2012). A Note on the normalized definition of Shannon’s diversity index in landscape pattern analysis. Environment and Natural Resources Research, 2(4), 54–60. https://doi.org/10.5539/enrr.v2n4p54

  • Rattanathawornkiti, K., Kanchanaketu, T., Suwanagul, A., & Hongtrakul, V. (2016). Genetic relationship assessment of pineapple germplasm in Thailand revealed by AFLP markers. Genomics and Genetics, 9(2 & 3), 56–65. https://doi.org/10.14456/gag.2016.8

  • Reddy, M. P., Sarla, N., & Siddiq, E. A. (2002). Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica, 128, 9–17. https://doi.org/10.1023/A:1020691618797

  • Rosmaina., Elfianis, R., Almaksur, A., & Zulfahmi. (2021). Minimal number of morphoagronomic characters required for the identification of pineapple (Ananas comosus) cultivars in peatlands of Riau, Indonesia. Biodiversitas, 22(9), 3854–3862. https://doi.org/10.13057/biodiv/d220931

  • Rosmaina., Febriandi, N., Ariyanti, E., Elfianis, R., Nilahayati., & Zulfahmi. (2022). Pineapple genetic diversity in Riau peat land assessed by random amplified polymorphic DNA (RAPD) marker. In IOP Conference Series: Earth and Environmental Science (Vol. 1114, No. 1, p. 012020). IOP Publishing. https://doi.org/10.1088/1755-1315/1114/1/012020

  • Semagn, K., Bjørnstad, Å., & Ndjiondjop, M. N. (2006). An overview of molecular marker methods for plants. African Journal of Biotechnology, 5(25), 2540–2568.

  • Serrote, C. M. L., Reiniger, L. R. S., Silva, K. B., dos Santos Rabaiolli, S. M., & Stefanel, C. M. (2020). Determining the polymorphism information content of a molecular marker. Gene, 726, 144175. https://doi.org/10.1016/j.gene.2019.144175

  • Singh, G. (Ed.) (2010). Plant Systematics: An intregated approach (3rd ed). CRC Press. https://doi.org/10.1201/b10255

  • Solin, N. W. N. M., Sobir., & Toruan-Mathius, N. (2014). Genetic diversity of DxP population yield component in oil palm’s paternal half-sib family based on microsatellite markers. Energy Procedia, 47, 196–203. https://doi.org/10.1016/j.egypro.2014.01.214

  • Souza, C. P. F., Ferreira, C. F., de Souza, E. H., Neto, A. R. S., Marconcini, J. M., da Silva Ledo, C. A., & Souza, F. V. D. (2017). Genetic diversity and ISSR marker association with the quality of pineapple fiber for use in industry. Industrial Crops and Products, 104, 263–268. https://doi.org/10.1016/j.indcrop.2017.04.059

  • Statista. (2024). Leading countries in pineapple production worldwide in 2022. https://www.statista.com/statistics/298517/global-pineapple-production-by-leading-countries/

  • Terryana, R. T., Nugroho, K., & Lestari, P. (2020). Genetic diversity of sugar palm populations from Cianjur and Banten revealed by simple sequence repeat (SSR) markers. In IOP Conference Series: Earth and Environmental Science (Vol. 418, No. 1, p. 012038). IOP Publishing. https://doi.org/10.1088/1755-1315/418/1/012038

  • Valencia, L., & Alcasid, C. (2014). Morpho-genetic characterization of cultivated and wild relatives of pineapple in the Philippines. Asian Academic Research Journal of Multidisciplinary, 1(27), 598–618.

  • Vanijajiva, O. (2012). Assessment of genetic diversity and relationships in pineapple cultivars from Thailand using ISSR marker. Journal of Agricultural Technology, 8(5), 1829–1838.

  • Vijayan, K. (2005). Inter simple sequence repeat (ISSR) polymorphism and its application in mulberry genome analysis. International Journal of Industrial Entomology, 10(2), 79–86.

  • Wang, J.-S., He, J.-H., Chen, H.-R., Chen, Y.-Y., & Qiao, F. (2017). Genetic diversity in various accessions of pineapple [Ananas comosus (L.) Merr.] using ISSR and SSR markers. Biochemical Genetics, 55, 347–366. https://doi.org/10.1007/s10528-017-9803-z

  • Yeh, F. C., Boyle, T., Ye, Z., Xiyan, J. M., & Ye, Z. H. (1999). POPGENE version 1.31: Microsoft Window-based freeware for population genetic analysis. https://www.scienceopen.com/document?vid=02bb9771-6f17-47fa-8668-b71a53982e87

  • Zulfahmi. (2013). Penanda DNA untuk analisis genetik tanaman [DNA markers for plant genetic analysis]. Jurnal Agroteknologi, 3(2), 41–52.