e-ISSN 2231-8526
ISSN 0128-7680
Whay Chuin Lim, Mohd Noor Hisham Mohd Nadzir, Mark Wen Han Hiew, Md. Shuhazlly Mamat, Muhamad Hazim Nazli and Shamarina Shohaimi
Pertanika Journal of Science & Technology, Volume 45, Issue 1, February 2022
DOI: https://doi.org/10.47836/pjtas.45.1.07
Keywords: Feed corn, Napier grass, nutrient solution, open-air hydroponic system, popcorn
Published on: 10 Febuary 2022
This study aimed to identify the chemical composition of hydroponic maize fodder (HMF) from two varieties of maize grains (popcorn and feed corn). A completely randomized design (CRD) with three replications was used in which popcorn was irrigated with clean tap water (T1) and nutrient solution (T2); feed corn irrigated with clean tap water (T3) and nutrient solution (T4). Seven-days green fodders were sampled for chemical analysis. The crude protein (CP) content was the highest at 7.48% in T4 compared to popcorn (P<0.05) and T3 (P>0.05). Treatment 3 showed the highest dry matter content as 94.42% (P>0.05) and organic matter content observed as 98.29% especially compared with T1 (P<0.05). The neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents of feed corn were insignificantly different, but T3 was observed as 67.66% and 41.55%, respectively, which were higher than T1 (P<0.05). Although feed corn had better nutritional value than popcorn, popcorn showed a 7% higher germination rate than feed corn (P<0.05). As a result, the total yield of 1.5 kg hydroponic maize fodder per kg feed corn was lower than popcorn (2.5 kg per kg grains). Hence, popcorn was used to grow HMF with the open-air hydroponic system. HMF showed better feed nutritive composition than conventionally planted Napier grass. A lower concentration of indigestible fiber (P<0.05) and a higher concentration of crude protein (12.28%) was observed in HMF compared to CP in Napier grass (7.22%) (P<0.05). In conclusion, the open-air hydroponics system can be an alternative method among smallholders by replacing conventionally planted fodder.
Abdullah, A. (2001). Nutritive value of barley fodder grown in a hydroponics system [Doctoral dissertation, Universiti Putra Malaysia]. Universiti Putra Malaysia Institutional Repository. http://psasir.upm.edu.my/id/eprint/10568/1/FP_2001_24_A.pdf
Adebiyi, O. A., Adeola, A. T., Osinowo, O. A., Brown, D., & Ng’Ambi, J. W. (2018). Effects of feeding hydroponics maize fodder on performance and nutrient digestibility of weaned pigs. Applied Ecology and Environmental Research, 16(3), 2415-2422. https://doi.org/10.15666/aeer/1603_24152422
Agius, A., Pastorelli, G., & Attard, E. (2019). Cows fed hydroponic fodder and conventional diet: Effects on milk quality. Archives Animal Breeding, 62(2), 517-525. https://doi.org/10.5194/aab-62-517-2019
Al-Ajmi, A., Salih, A., Kadhim, I., & Othman Y. (2009). Yield and water use efficiency of barley fodder produced under hydroponic system in GCC countries using tertiary treated sewage effluents. Journal of Phytology, 1(5), 342-348.
Al-Karaki, G. N., & Al-Hashimi, M. (2012). Green fodder production and water use efficiency of some forage crops under hydroponic conditions. International Scholarly Research Notices, 2012, 924672. https://doi.org/10.5402/2012/924672
Aruna, P., Chakravarthi, M. K., Murthi, A. K., Lavanya, R., & Siva, S. (2018). Effect of graded levels of urea fertilizer on growth and biomass yield of maize under low-cost hydroponic fodder production system. Forage Research, 43(4), 283-286.
Association of Official Analytical Chemists. (1990). Official methods of analysis (15th ed.). AOAC.
Bayble, T., Melaku, S., & Prasad, N. K. (2007). Effects of cutting dates on nutritive value of Napier (Pennisetum purpureum) grass planted sole and in association with Desmodium (Desmodium intortum) or Lablab (Lablab purpureus). Livestock Research for Rural Development, 19(1), 120-136.
Dung, D. D., Godwin, I. R., & Nolan, J. V. (2010). Nutrient content and in sacco degradation of hydroponic barley sprouts grown using nutrient solution or tap water. Journal of Animal and Veterinary Advances, 9(18), 2432-2435. https://doi.org/10.3923/javaa.2010.2432.2436
Fazaeli, H., Golmohammadi, H. A., Shoayee, A. A., Montajebi, N. & Mosharraf, S. (2011). Performance of feedlot calves fed hydroponics fodder barley. Journal Agricultural Science Technology, 13(3), 367-375.
Fazaeli, H., Golmohammadi, H. A., Tabatabayee, S. N., & Asghari-Tabrizi, M. (2012). Productivity and nutritive value of barley green fodder yield in hydroponic system. World Applied Sciences Journal, 16(4), 531-539.
Francis, J. M., Apgar, G. A., Crandell, K. G., Handlos, G. C., & Perry, E. B. (2018). The effects of hydroponic wheat fodder on fecal metabolites in equines. Journal of Equine Veterinary Science, 70, 84-90. https://doi.org/10.1016/j.jevs.2018.05.212
Gebremedhin, W. K. (2015). Nutritional benefit and economic value of feeding hydroponically grown maize and barley fodder for Konkan Kanyal goats. IOSR Journal of Agriculture and Veterinary Science, 8(7), 24-30.
Ghani, A. A. A., Shahudin, M. S., Zamri-Saad, M., Zuki, A. B., Wahid, H., Kasim, A., Salisi, M. S., & Hassim, H. A. (2017). Enhancing the growth performance of replacement female breeder goats through modification of feeding program. Veterinary World, 10(6), 630-635. https://doi.org/10.14202/vetworld.2017.630-635
Halim, R. A., Shampazuraini, S., & Idris, A. B. (2013). Yield and nutritive quality of nine Napier grass varieties in Malaysia. Malaysian Journal of Animal Science, 16(2), 37-44.
Hubballi, M., Nakkeeran, S., Raguchander, T., Anand, T., & Samiyappan, R. (2010). Effect of environmental conditions on growth of Alternaria alternata causing leaf blight of noni. World Journal of Agricultural Sciences, 6(2), 171-177.
International Organization for Standardization. (2008). ISO 13906:2008: Animal feeding stuffs - Determination of acid detergent fibre (ADF) and acid detergent lignin (ADL) contents. https://www.iso.org/standard/43032.html
International Seed Testing Association. (2016). International rules for seed testing. ISTA.
Islam, R., Jalal, N., & Akbar, M. A. (2016). Effect of seed rate and water level on production and chemical analysis of hydroponic fodder. European Academic Research, 4(8), 6724-6753.
Jemimah, E. R., Gnanaraj, P. T., Muthuramalingam, T., Devi, T., & Vennila, C. (2018). Productivity, nutritive value, growth rate, biomass yield and economics of different hydroponic green fodders for livestock. International Journal of Livestock Research, 8(9), 261-270. https://doi.org/10.5455/ijlr.20171013104959
Kantale, R. A., Halburge, M. A., Deshmukh, A. D., Dhok, A. P., Raghuwanshi, D. S., & Lende, S. R. (2017). Nutrient changes with the growth of hydroponics wheat fodder. International Journal of Science, Environment and Technology, 6(3), 1800-1803.
Kaouche-Adjlanea, S., Ahmed Serir, A., Bafdel, M., & Benhacine, R. (2016). Techno-economic approach to hydroponic forage crops: Use for feeding dairy cattle herd. Journal of Applied Environmental and Biological Sciences, 6(3), 83-87.
Kide, W., Desai, B. G., & Kumar, S. (2015). Nutritional improvement and economic value of hydroponically sprouted maize fodder. Life Sciences - International Research Journal, 2(2), 76-79.
Kumar, R., Mathur, M., Karnani, M., & Dutt, S. (2018). Hydroponics: An alternative to cultivated green fodder: A review. Journal of Entomology and Zoology Studies, 6(6), 791-795.
Lounglawan, P., Lounglawan, W., & Suksombat, W. (2014). Effect of cutting interval and cutting height on yield and chemical composition of King Napier grass (Pennisetum purpureum x Pennisetum americanum). APCBEE Procedia, 8, 27-31. https://doi.org/10.1016/j.apcbee.2014.01.075
Mathis, C. P., Cochran, R. C., Heldt, J. S., Woods, B. C., Abdelgadir, I. E. O., Olson, K. C., Titgemeyer, E. C., & Vanzant, E. S. (2000). Effects of supplemental degradable intake protein on utilization of medium-to low-quality forages. Journal of Animal Science, 78(1), 224-232. https://doi.org/10.2527/2000.781224x
Molla, A., & Sharaiha, R. K. (2010). Competition and resource utilization in mixed cropping of barley and durum wheat under different moisture stress levels. World Journal of Agricultural Sciences, 6(6), 713-719.
Naik, P. K., Dhuri, R. B., Karunakaran, M., Swain, B. K., & Singh, N. P. (2013). Hydroponics technology for green fodder production. Indian Dairyman, 65(3), 54-58.
Naik, P. K., Dhuri, R. B., Karunakaran, M., Swain, B. K., & Singh, N. P. (2014). Effect of feeding hydroponics maize fodder on digestibility of nutrients and milk production in lactating cows. The Indian Journal of Animal Sciences, 84(8), 880-883.
Naik, P. K., Dhuri, R. B., Swain, B. K., & Singh, N. P. (2012). Nutrient changes with the growth of hydroponics fodder maize. Indian Journal of Animal Nutrition, 29(2), 161-163.
Naik, P. K., Swain, B. K., & Singh, N. P. (2015). Production and utilisation of hydroponics fodder. Indian Journal of Animal Nutrition, 32(1), 1-9.
Ndaru, P. H., Huda, A. N., Prasetyo, R. D., Shofiatun, U., Nuningtyas, Y. F., & Ndaru, R. K. (2020). Providing high quality forages with hydroponic fodder system. In IOP Conference Series: Earth and Environmental Science (Vol. 478, No. 1, p. 012054). IOP Publishing. https://doi.org/10.1088/1755-1315/478/1/012054
Peer, D. J., & Leeson, S. (1985). Feeding value of hydroponically sprouted barley for poultry and pigs. Animal Feed Science and Technology, 13(3-4), 183-190. https://doi.org/10.1016/0377-8401(85)90021-5
Rahman, M. M., Abdullah, R. B., Wan Khadijah, W. E., Nakagawa, T., & Akashi, R. (2014). Feed intake and growth performance of goats offered Napier grass (Pennisetum purpureum) supplemented with concentrate pellet and soya waste. Sains Malaysiana, 43(7), 967-971.
Rambau, M. D., Fushai, F., & Baloyi, J. J. (2016). Productivity, chemical composition and ruminal degradability of irrigated Napier grass leaves harvested at three stages of maturity. South African Journal of Animal Science, 46(4), 398-408. https://doi.org/10.4314/sajas.v46i4.8
Sneath, R., & McIntosh, F. (2003). Review of hydroponic fodder production for beef cattle. https://cpb-us-east-1-juc1ugur1qwqqqo4.stackpathdns.com/blogs.cornell.edu/dist/e/4211/files/2014/05/Hydroponicfodder-article-11wpnm0.pdf
Thadchanamoorthy, S., & Pramalal, V. J. C. (2012). Evaluation of hydroponically grown maize as a feed source for rabbits. http://agri.pdn.ac.lk/ext_staff/upload/publications/publication_249_dept_5_fbe225af2b33ebfaab9e85855d643937.pdf#page=17
Trubey, C. R., Rhykerd, C. L., Noller, C. H., Ford, D. R., & George, J. R. (1969). Effect of light, culture solution, and growth period on growth and chemical composition of hydroponically produced oat seedlings. Agronomy Journal, 61(5), 663-665. https://doi.org/10.2134/agronj1969.00021962006100050003x
Valente, T. N. P., da Silva Lima, E., dos Santos, W. B. R., Cesario, A. E. S., Tavares, C. A. J., & de Freitas, M. A. M. (2016). Ruminal microorganism consideration and protein used in the metabolism of the ruminants: A review. African Journal of Microbiology Research, 10(14), 456-464. https://doi.org/10.5897/AJMR2016.7627
Zailan, M. Z., Yaakub, H., & Jusoh, S. (2016). Yield and nutritive value of four Napier (Pennisetum purpureum) cultivars at different harvesting ages. Agriculture and Biology Journal of North America, 7(5), 213-219. https://doi.org/10.5251/abjna.2016.7.5.213.219
ISSN 0128-7680
e-ISSN 2231-8526