e-ISSN 2231-8526
ISSN 0128-7680
Engku Hasmah Engku Abdullah, Azizah Misran, Muhammad Nazmin Yaapar, Mohd Rafii Yusop and Asfaliza Ramli
Pertanika Journal of Science & Technology, Volume 44, Issue 3, August 2021
DOI: https://doi.org/10.47836/pjtas.44.3.09
Keywords: Chalkiness, high temperature, rice quality, rice yield, silicon fertilisation
Published on: 30 August 2021
Silicon (Si) is a micronutrient that can increase the resistance of certain plants against multiple biotic or abiotic stresses. It is known that Si has a beneficial effect on plant growth, beginning in the soil, which could lead to a good crop yield. Despite its benefits, Si is not listed among the generally essential elements or nutrients for rice production in many countries such as Malaysia. This review discusses the ability to uptake Si and its benefits on rice. Environmental factors affect rice production, and among the factors, high temperature has been shown to disrupt the physiological development of rice grain, which contributes to chalkiness. Chalkiness is an undesirable trait that decreases grain’s value, milling, cooking, and eating quality. The application of Si could ameliorate rice grain quality, thus providing a valuable reference for Si fertiliser use in high-quality rice production. This review also presents an update on the potentials of Si in improving the rice yield and grain quality, including Si’s ability to minimise grain chalkiness. Therefore, it is anticipated that Si applications will increase rice yield and grain quality and help to reduce chalkiness.
Adrees, M., Ali, S., Rizwan, M., Zia-ur-Rehman, M., Ibrahim, M., Abbas, F., Farid, M., Qayyum, M. F., & Irshad, M. K. (2015). Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: A review. Ecotoxicology and Environmental Safety, 119, 186-197. https://doi.org/10.1016/j.ecoenv.2015.05.011
Agarie, S. (1998). Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Production Science, 1(2), 96-103. https://doi.org/10.1626/pps.1.96
Agostinho, F. B., Tubana, B. S., Martins, M. S., & Datnoff, L. E. (2017). Effect of different silicon sources on yield and silicon uptake of rice grown under varying phosphorus rates. Plants, 6(3), 35. https://doi.org/10.3390/plants6030035
Al-Amin, A. Q., Azam, M. N., Yeasmin, M., & Fatimah, K. (2010). Policy challenges towards potential climate change impacts: In search of agro-climate stability. Scientific Research and Essays, 5(18), 2681-2685. https://doi.org/10.5897/SRE.9000740
Alvarez, J., Datnoff, L. E., & Snyder, G. H. (2004). The economics of silicon applications on rice and sugarcane in Florida. University of Florida’s Institute of Food and Agricultural Sciences (UF/IFAS).
Ansari, T. H., Iwasaki, K., Yoshida, T., & Yamamoto, Y. (2016). Status of nutrient elements in rice grain in relation. Bangladesh Agronomy Journal, 19(2), 125-137. http://doi.org/10.3329/baj.v19i2.31861
Babu Rao, G., & Sushmitha, P. (2017). Silicon uptake, transportation and accumulation in rice. Journal of Pharmacognosy and Phytochemistry, 6(6), 290-293.
Cao, X., Wen, H., Li, C., & Gu, Z. (2009). Differences in functional properties and biochemical characteristics of congenetic rice proteins. Journal of Cereal Sciences, 50(2), 184-189. https://doi.org/10.1016/j.jcs.2009.04.009
Chen, W., Yao, X., Cai, K., & Chen, J. (2011). Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biological Trace Element Research, 142(1), 67-76. https://doi.org/10.1007/s12011-010-8742-x
Cheng, F., Zhong, L., Zhao, N., Liu, Y., & Zhang, G. (2005). Temperature induced changes in the starch components and biosynthetic enzymes of two rice varieties. Journal of Plant Growth Regulation, 46(1), 87-95. https://doi.org/10.1007/s10725-005-7361-6
Chun, A., Song, J. Kim, K. J., & Lee, H. J. (2009). Quality of head and chalky rice and deterioration of eating quality by chalky rice. Journal of Crop Science and Biotechnology, 12(4), 239-244. https://doi.org/10.1007/s12892-009-0142-4
Cooke, J., & Leishman, M. R. (2011). Is plant ecology more siliceous than we realize?. Trends in Plant Science, 16(2), 61-68. https://doi.org/10.1016/j.tplants.2010.10.003
Cooper, N. T. W., Siebenmorgen, T. J., & Counce, P. A. (2008). Effects of nighttime temperature during kernel development on rice physicochemical properties. Cereal Chemistry, 85(3), 276-282. https://doi.org/10.1016/j.fcr.2011.03.012
Cuong, T. X., Ullah, H., Datta, A., & Hanh, T. C. (2017). Effects of silicon-based fertilizer on growth, yield and nutrient uptake of rice in tropical zone of Vietnam. Rice Science, 24(5), 283-290. https://doi.org/10.1016/j.rsci.2017.06.002
Datnoff, L. E., Rodrigues, F. A., & Seebold, K. W. (2007). Silicon and plant nutrition. In L. E. Datnoff, W. H. Elmer, & D. M. Huber (Eds.), Mineral nutrition and plant disease (pp. 233-246). APS Press.
Datnoff, L. E., Seebold, K. W., & Correa-V, F. J. (2001). Chapter 10 The use of silicon for integrated disease management: Reducing fungicide applications and enhancing host plant resistance. Studies in Plant Science, 8, 171-184. https://doi.org/10.1016/S0928-3420(01)80014-8
de Oliveira, L. M., Marchesan, E., de David, R., Werle, I. S., Aramburu, B. B., Donato, G., da Silva, A. L., & da Costa, I. F. D. (2019). Occurrence of rice blast on and grain quality of irrigated rice fertilized with nitrogen and silicates. Pesquisa Agropecuária Brasileira, 54, e00295. https://doi.org/10.1590/S1678-3921.pab2019.v54.00295
Dorairaj, D., & Ismail, M. R. (2017). Distribution of silicified microstructures, regulation of cinnamyl alcohol dehydrogenase and lodging resistance in silicon and paclobutrazol mediated Oryza sativa. Frontiers in Physiology, 8, 1-19. https://doi.org/10.3389/fphys.2017.00491
Ebron, G. (2013). In search of the perfect grain. Rice Today, 12, 15-17.
Emam, M. M., Khattab, H. I., Helal, N. M., & Deraz A. E. (2014). Effect of selenium and silicon on yield quality of rice plant grown under drought stress. Australian Journal of Crop Science, 8(4), 596-605.
Epstein, E. (1999). Silicon. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 641-664. https://doi.org/10.1146/annurev.arplant.50.1.641
Farnaz, A. B., Kadir, J. Nasehi, A. Rahaghi, S. R. H., & Sajili, H. (2012). Effect of silicon on rice blast disease. Pertanika Journal of Tropical Agricultural Science, 35(S), 1-12.
Fitzgerald, M. A., & Resurreccion, A. P. (2009). Maintaining the yield of edible rice in warming world. Functional Plant Biology, 36(12), 1037-1045. https://doi.org/10.1071/FP09055
Gumel, D. Y., Abdullah, A. M., Mohd. Sood, A., Elhadi, R. E., Jamalani M. A., & Ahmed Ben Youssef, K. A. (2017). Assessing paddy rice yield sensitivity to temperature and rainfall variability in Peninsular Malaysia using DSSAT model. International Journal of Applied Environmental Sciences, 12(8), 1521-1245.
Guntzer, F., Keller C., & Meunier J. D. (2012). Benefits of plant silicon for crops: A review. Agronomy for Sustainable Development, 32(1), 201-213. https://doi.org/10.1007/s13593-011-0039-8
Han, Y. Q, Wen, J. H, Peng, Z. P, Zhang, D. Y., & Hou, M. L. (2018). Effects of silicon amendment on the occurrence of rice insect pests and diseases in a field test. Journal of Integrative Agriculture, 17(10), 2172-2181. https://doi.org/10.1016/S2095-3119(18)62035-0
Haynes, R. J. (2014). A contemporary overview of silicon availability in agricultural soils. Journal Plant Nutrition and Soil Science, 177(6), 831-844. https://doi.org/10.1002/jpln.201400202
Heckman, J. R. (2012). The soil profile. Rutgers Cooperative Extension, Plant Biology and Pathology Department, University of New Jersey.
Hodson, M. J., White, P. J., Mead, A., & Broadley, M. R. (2005). Phylogenetic variation in the silicon composition of plants. Annals of Botany, 96(6), 1027-1046. https://doi.org/10.1093/aob/mci255
Inanaga, S., Higuchi, Y., & Chishaki, N. (2002). Effect of silicon application on reproductive growth of rice plant. Soil Science and Plant Nutrition, 48(3), 341-345. https://doi.org/10.1080/00380768.2002.10409210
Ishimaru, T., Horigane, A. K., Ida, M., Iwasawa, N., San-oh, Y. A., Nakazono, M., Nishizawa, N. K., Masumura, T., Kondo, M., & Yoshida, M. (2009). Formation of grain chalkiness and changes in water distribution in developing rice caryopses grown under high-temperature stress. Journal of Cereal Science, 50(2), 166-174. https://doi.org/10.1016/j.jcs.2009.04.011
Islam, W., Tayyab, M., Khalil, F., Hua, Z., Huang, Z., & Chen, H. Y. (2020). Silicon-mediated plant defense against pathogens and insect pests. Pesticide Biochemistry and Physiology, 168, 104641. https://doi.org/10.1016/j.pestbp.2020.104641
Jafari, H., Dastan, S., Nasiri, A. R., Valaei, L., & Eslamii, H. R. (2013). Nitrogen and silicon application facts on rice growth parameters at Alborz Mountain Range. Electronic Journal of Biology, 9(4), 72–76.
Ju, S., Wang, L., & Chen, J. (2020). Effects of silicon on the growth, photosynthesis and chloroplast ultrastructure of Oryza sativa L. seedlings under acid rain stress. Silicon, 12(3), 655-664. https://doi.org/10.1007/s12633-019-00176-8
Kaneko, K., Sasaki, M., Kuribayashi, N., Suzuki, H., Sasuga, Y., Shiraya, T., Inomata, T., Itoh, K., Baslam, M., & Mitsui, T. (2016). Proteomic and glycomic characterization of rice chalky grains produced under moderate and high-temperature conditions in field system. Rice, 9(1), 26. https://doi.org/10.1186/s12284-016-0100-y
Kim, S. S., Lee, S. E. Kim, O. W., & Kim, D. C. (2000). Physicochemical characteristics of chalky kernels and their effects on sensory quality of cooked rice. Cereal Chemistry, 77(3), 376-379. https://doi.org/10.1094/CCHEM.2000.77.3.376
Korndörfer, G. K, Datnoff L. E., & Corrêa, G. F. (1999). Influence of silicon on grain discoloration and upland rice grown on four savanna soils of Brazil. Journal of Plant Nutrition, 22(1), 93-102. https://doi.org/10.1080/01904169909365609
Lavinsky, A. O., Detmann, K. C., Reis, J. V., Ávila, R. T., Sanglard, M. L., Pereira, L. F., Sanglard, L. M. V. P., Rodrigues, F. A., Araújo, W. L., & DaMatta, F. M. (2016). Silicon improves rice grain yield and photosynthesis specifically when supplied during the reproductive growth stage. Journal of Plant Physiology, 206, 125-132. https://doi.org/10.1016/j.jplph.2016.09.010
Li, N., Feng, A., & Liu, N. (2020). Silicon application improved the yield and nutritional quality while reduced cadmium concentration in rice. Environmental Science and Pollution Research, 27(11), 20370-20379. https://doi.org/10.1007/s11356-020-08357-4
Liang, Y., Nikolic, M., Elanger, R. B., Gong, H., & Song, A. (2015). Effect of silicon on crop growth, yield and quality. In Silicon in agriculture (pp. 209-223). Springer. https://doi.org/10.1007/978-94-017-9978-2_11
Liang, Y., Sun, W., Zhu, Y. G., & Christie, P. (2007). Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environmental Pollution, 147(2), 422-428. https://doi.org/10.1016/j.envpol.2006.06.008
Lisle, A. J., Martin, M., & Fitzgerald, M. A. (2000). Chalky and translucent rice grains differ in starch composition and structure and cooking properties. Cereal Chemistry, 77(5), 627-632. https://doi.org/10.1094/CCHEM.2000.77.5.627
Liu, Q., Zhou, X., & Sun, Z. (2017). Application of silicon fertilizer affects nutritional quality of rice. Chilean Journal of Agricultural Research, 77(2), 163-170. http://doi.org/10.4067/S0718-58392017000200163
Liu, X., Huang, Z., Li, Y., Xie, W., Li, W., Tang, X., Ashraf, U., Kong, L., Wu, L., Wang, S., & Mo, Z. (2020). Selenium-silicon (Se-Si) induced modulations in physio-biochemical responses, grain yield, quality, aroma formation and lodging in fragrant rice. Ecotoxicology and Environmental Safety, 196, 110525. https://doi.org/10.1016/j.ecoenv.2020.110525
Ma, J. F. (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition, 50(1), 11-18. https://doi.org/10.1080/00380768.2004.10408447
Ma, J. F., & Takahashi E. (2002). Soil, fertilizer, and plant silicon research in Japan. Elsevier.
Ma, J. F., & Yamaji, N. (2006). Silicon uptake and accumulation in higher plants. Trends in Plant Science, 11(8), 392-397. https://doi.org/10.1016/j.tplants.2006.06.007
Ma, J. F., & Yamaji, N. (2008). Functions and transport of silicon in plants. A review. Cellular and Molecular Life Sciences, 65(19), 3049-3057. https://doi.org/10.1007/s00018-008-7580-x
Ma, J. F., & Yamaji, N. (2015). A cooperative system of silicon transport in plants. Trends in Plant Science, 20(7), 435-442. https://doi.org/10.1016/j.tplants.2015.04.007
Ma, J. F., Goto, S., Tamai, K., & Ichii, M. (2001). Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiology, 127(4), 1773-1780. https://doi.org/10.1104/pp.010271
Ma, J. F., Nishimura, K., & Takahashi, E. (1989). Effect of silicon on the growth of rice plant at different growth stages. Soil Science and Plant Nutrition, 35(3), 347-356. https://doi.org/10.1080/00380768.1989.10434768
Ma, J. F., Tamai, K., Ichii, M., & Wu, G. F. (2002). A rice mutant defective in Si uptake. Plant Physiology, 130(4), 2111-2117. https://doi.org/10.1104/pp.010348
Ma, J. F., Yamaji, N., & Mitani-Ueno, N. (2011). Transport of silicon from roots to panicles in plants. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 87(7), 377-385. https://doi.org/10.2183/pjab.87.377
Meena, V. D., Dotaniya, M. L., Coumar, V., Rajendiran, S., Ajay, Kundu, S., & Subba Rao, A. (2014). A case for silicon fertilization to improve crop yields in tropical soils. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 84(3), 505-518. https://doi.org/10.1007/s40011-013-0270-y
Ministry of Agriculture and Food Industries Malaysia. (2019). Agrofood Statistics 2019. https://www.mafi.gov.my/documents/20182/273021/Perangkaan+Agromakanan +2019. pdf/196be0d7-e223-46fb-88c3-6a592f52b9fe
Mizuno, N. (1987). Effects of silica on hull weight and ripening of rice plants. Journal of Plant Nutrition, 10(9-16), 2159. https://doi.org/10.1080/01904168709363767
Mo, Z., Lei, S., Ashraf, U., Khan, I., Li, Y., Pan, S., Duan, M., Tian, H., & Tang, X. (2017). Silicon fertilization modulates 2-acetyl-1-pyrroline content, yield formation and grain quality of aromatic rice. Journal of Cereal Science, 75, 17-24. https://doi.org/10.1016/j.jcs.2017.03.014
Nhan, P. P., Dong, N. T., Nhan, H. T., & Chi, N. T. M. (2012). Effect of OryMaxSL and SiliysolMS on growth and yield of MTL560 rice. World Applied Sciences Journal, 19(5), 704-709.
Ning, D., Liang, Y., Liu, Z., Xiao, J., & Duan, A. (2016). Impacts of steel-slag-based silicate fertilizer on soil acidity and silicon availability and metals-immobilization in a paddy soil. PLOS One, 11(12), 1-15. https://doi.org/10.1371/journal.pone.0168163
NurulNahar, E., Adam, P., Mazidah, M., Roslan, I., & Rafii, M. Y. (2020). Rice blast disease in Malaysia: Options for its control. Journal of Tropical Agriculture and Food Science, 48(1), 11-23.
Okuda, A., & Takahashi. E. (1961). Studies on the physiological role of Si in crop plants: 1. Discussion on the Si deficient culture method. Journal of the Science of Soil and Manure, 32, 475-480.
Patil, A. A., Durgude, A. G., Pharande, A. L., Kadlag, A. D., & Nimbalkar, C. A. (2017). Effect of calcium silicate as a silicon source on growth and yield of rice plants. International Journal of Chemical Studies, 5(6), 545-549.
Patindol, J., & Wang, Y. J. (2003). Fine structures and physicochemical properties of starches from chalky and translucent rice kernels. Journal of Agricultural and Food Chemistry, 51, 2777-2784. https://doi.org 10.1021/jf026101t
Patindol, J., Siebenmorgen, T. J., & Wang, Y. J. (2015). Impact of environmental factors on rice starch structure: A review. Starch, 67(1-2), 42-54. https://doi.org/10.1002/star.201400174
Prabhu, A. S., Barbosa Filho, M. P., Datnoff, L. E., Snyder, G. H., Berni, R. F., Rodrigues, F. A., & Dallagnol, L. J. (2012). Silicon reduces brown spot severity and grain discoloration on several rice genotypes. Tropical Plant Pathology, 37(6), 409-414. https://doi.org/10.1590/S1982-56762012000600005
Radziah, M. L., Engku Elini, E. A., Tapsir, S., & Mohamad Zabawi, A. G. (2010). Food security assessment under climate change scenario in Malaysia. Palawija News, 27(1), 1-5.
Rajamoorthy, Y., Abdul Rahim, K., & Munusamy, S. (2015). Rice industry in Malaysia: Challenges, policies and implications. Procedia Economics and Finance, 31(15), 861-867. https://doi.org/10.1016/s2212-5671(15)01183-1
Sahebi, M., Hanafi, M. M., Siti Nor Akmar, A., Rafii, M. Y., Azizi, P., Tengoua, F. F., Nurul Mayzaitul Azwa, J., & Shabanimofrad, M. (2015). Importance of silicon and mechanisms of biosilica formation in plants. BioMed Research International, 2015, 396010. https://doi.org/10.1155/2015/396010
Savant, N. K., Snyder, G. H., & Datnoff, L. E. (1997). Silicon management and sustainable rice production. Advances in agronomy, 58, 151-199. https://doi.org/10.1016/S0065-2113(08)60255-2
Seebold, K. W. (1998). The influence of silicon fertilization on the development and control of blast, caused by Magnaporthe grisea (Hebert) Barr, in upland rice [Doctoral’s dissertation, University of Florida]. UF Institutional Repository. https://ufdc.ufl.edu/AA00028902/00001
Siregar, A. F., Sipahutar, I. A., Anggria, L., & Yufdi, M. P. (2021). Improving rice growth and yield with silicon addition in Oxisols. In IOP Conference Series: Earth and Environmental Science (Vol. 648, No. 1, p. 012202). IOP Publishing. https://doi.org/10.1088/1755-1315/648/1/012202
Snyder, G. H., Jones, D. B., & Gascho, G. J. (1986). Silicon fertilization of rice on Everglades Histosols. Soil Science Society of America Journal, 50(5), 1259-1263. https://doi.org/10.2136/sssaj1986.03615995005000050035x
Swain, R., & Rout, G. R. (2018). Effect of silicon interaction with nutrients of rice. Journal of Experimental Biology and Agriculture Sciences, 6(4), 717-731. http://doi.org/10.18006/2018.6(4).717.731
Takahashi, E. (1995). Uptake mode and physiological functions of silica. Science Rice Plant, 2, 58-71.
US Department of Agriculture. (2021). World production volume of milled rice from 2008/2009 to 2019/2020. https://www.statista.com/statistics/271972/world-husked-rice-production-volume-since-2008/
Vaghefi, N., Shamsudin, M. N., Radam, A., & Rahim, K. A. (2013). Impact of climate change on rice yield in the main rice growing areas of Peninsular Malaysia. Research Journal of Environmental Sciences, 7(2), 59-67. https://doi.org/10.3923/rjes.2013.59.67
Wei, C., Qin, F., Zhu, L., Zhou, W., Chen, Y., & Wang, Y. (2010). Microstructure and ultrastructure of high-amylose rice resistant starch granules modified by antisense RNA inhibition of starch branching enzyme. Journal of Agricultural and Food Chemistry, 58, 1224-1232. https://doi.org/10.1021/jf9031316
Yamakawa, H., & Hakata, M. (2010). Atlas of rice grain filling-related metabolism under high temperature: Joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation. Plant and Cell Physiology, 51(9), 795-809. https://doi.org/10.1093/pcp/pcq034
Yamakawa, H., Hirose, T., Kuroda, M., & Yamaguchi, T. (2007). Comprehensive expression profiling of rice grain ripening-related genes under high temperature using DNA microarray. Plant Physiology, 144(1), 258-277. https://doi.org/10.1104/pp.107.098665
Yu, T., Jiang, W., Ham, T., Chu, S., Lestari, P. Lee, J., Kim, M., Xu, F., Han, L., Dai, L., & Koh, H. (2008). Comparison of grain quality traits between japonica rice cultivars from Korea and Yunnan Province of China. Journal of Crop Science and Biotechnology, 11(2), 135-140.
Zhang, G. L., Dai, Q. G., Wang, J. W., Zhang, H. C., Huo, Z. Y., & Ling, L. (2007). Effects of silicon fertilizer rate on yield and quality of japonica rice Wuyujing 3. Chinese Journal of Rice Science, 21(3), 299-303. https://doi.org/10.3321/j.issn:1001-7216.2007.03.014
Zhao, X. & Fitzgerald, M. (2013). Climate change: Implications for the yield of edible rice. PLOS One, 8(6), e66218. https://doi.org/10.1371/journal.pone.0066218
Zhaomiao, L., Deyi, Z., Xincheng, Z., Zunxin, W., Jinchao, L., Zhenghui, L. Ganghua, L., Shaohua, W., & Yanfeng, D. (2015). Chalky part differs in chemical composition from translucent part of japonica rice grains as revealed by a notched-belly mutant with white-belly. Journal of the Science of Food and Agriculture, 96(11), 3937-3943. https://doi.org/10.1002/jsfa.7793
ISSN 0128-7680
e-ISSN 2231-8526