PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 44 (3) Aug. 2021 / JTAS-2251-2021

 

The Potential of Silicon in Improving Rice Yield, Grain Quality, and Minimising Chalkiness: A Review

Engku Hasmah Engku Abdullah, Azizah Misran, Muhammad Nazmin Yaapar, Mohd Rafii Yusop and Asfaliza Ramli

Pertanika Journal of Science & Technology, Volume 44, Issue 3, August 2021

DOI: https://doi.org/10.47836/pjtas.44.3.09

Keywords: Chalkiness, high temperature, rice quality, rice yield, silicon fertilisation

Published on: 30 August 2021

Silicon (Si) is a micronutrient that can increase the resistance of certain plants against multiple biotic or abiotic stresses. It is known that Si has a beneficial effect on plant growth, beginning in the soil, which could lead to a good crop yield. Despite its benefits, Si is not listed among the generally essential elements or nutrients for rice production in many countries such as Malaysia. This review discusses the ability to uptake Si and its benefits on rice. Environmental factors affect rice production, and among the factors, high temperature has been shown to disrupt the physiological development of rice grain, which contributes to chalkiness. Chalkiness is an undesirable trait that decreases grain’s value, milling, cooking, and eating quality. The application of Si could ameliorate rice grain quality, thus providing a valuable reference for Si fertiliser use in high-quality rice production. This review also presents an update on the potentials of Si in improving the rice yield and grain quality, including Si’s ability to minimise grain chalkiness. Therefore, it is anticipated that Si applications will increase rice yield and grain quality and help to reduce chalkiness.

  • Adrees, M., Ali, S., Rizwan, M., Zia-ur-Rehman, M., Ibrahim, M., Abbas, F., Farid, M., Qayyum, M. F., & Irshad, M. K. (2015). Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: A review. Ecotoxicology and Environmental Safety, 119, 186-197. https://doi.org/10.1016/j.ecoenv.2015.05.011

  • Agarie, S. (1998). Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Production Science, 1(2), 96-103. https://doi.org/10.1626/pps.1.96

  • Agostinho, F. B., Tubana, B. S., Martins, M. S., & Datnoff, L. E. (2017). Effect of different silicon sources on yield and silicon uptake of rice grown under varying phosphorus rates. Plants, 6(3), 35. https://doi.org/10.3390/plants6030035

  • Al-Amin, A. Q., Azam, M. N., Yeasmin, M., & Fatimah, K. (2010). Policy challenges towards potential climate change impacts: In search of agro-climate stability. Scientific Research and Essays, 5(18), 2681-2685. https://doi.org/10.5897/SRE.9000740

  • Alvarez, J., Datnoff, L. E., & Snyder, G. H. (2004). The economics of silicon applications on rice and sugarcane in Florida. University of Florida’s Institute of Food and Agricultural Sciences (UF/IFAS).

  • Ansari, T. H., Iwasaki, K., Yoshida, T., & Yamamoto, Y. (2016). Status of nutrient elements in rice grain in relation. Bangladesh Agronomy Journal, 19(2), 125-137. http://doi.org/10.3329/baj.v19i2.31861

  • Babu Rao, G., & Sushmitha, P. (2017). Silicon uptake, transportation and accumulation in rice. Journal of Pharmacognosy and Phytochemistry, 6(6), 290-293.

  • Cao, X., Wen, H., Li, C., & Gu, Z. (2009). Differences in functional properties and biochemical characteristics of congenetic rice proteins. Journal of Cereal Sciences, 50(2), 184-189. https://doi.org/10.1016/j.jcs.2009.04.009

  • Chen, W., Yao, X., Cai, K., & Chen, J. (2011). Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biological Trace Element Research, 142(1), 67-76. https://doi.org/10.1007/s12011-010-8742-x

  • Cheng, F., Zhong, L., Zhao, N., Liu, Y., & Zhang, G. (2005). Temperature induced changes in the starch components and biosynthetic enzymes of two rice varieties. Journal of Plant Growth Regulation, 46(1), 87-95. https://doi.org/10.1007/s10725-005-7361-6

  • Chun, A., Song, J. Kim, K. J., & Lee, H. J. (2009). Quality of head and chalky rice and deterioration of eating quality by chalky rice. Journal of Crop Science and Biotechnology, 12(4), 239-244. https://doi.org/10.1007/s12892-009-0142-4

  • Cooke, J., & Leishman, M. R. (2011). Is plant ecology more siliceous than we realize?. Trends in Plant Science, 16(2), 61-68. https://doi.org/10.1016/j.tplants.2010.10.003

  • Cooper, N. T. W., Siebenmorgen, T. J., & Counce, P. A. (2008). Effects of nighttime temperature during kernel development on rice physicochemical properties. Cereal Chemistry, 85(3), 276-282. https://doi.org/10.1016/j.fcr.2011.03.012

  • Cuong, T. X., Ullah, H., Datta, A., & Hanh, T. C. (2017). Effects of silicon-based fertilizer on growth, yield and nutrient uptake of rice in tropical zone of Vietnam. Rice Science, 24(5), 283-290. https://doi.org/10.1016/j.rsci.2017.06.002

  • Datnoff, L. E., Rodrigues, F. A., & Seebold, K. W. (2007). Silicon and plant nutrition. In L. E. Datnoff, W. H. Elmer, & D. M. Huber (Eds.), Mineral nutrition and plant disease (pp. 233-246). APS Press.

  • Datnoff, L. E., Seebold, K. W., & Correa-V, F. J. (2001). Chapter 10 The use of silicon for integrated disease management: Reducing fungicide applications and enhancing host plant resistance. Studies in Plant Science, 8, 171-184. https://doi.org/10.1016/S0928-3420(01)80014-8

  • de Oliveira, L. M., Marchesan, E., de David, R., Werle, I. S., Aramburu, B. B., Donato, G., da Silva, A. L., & da Costa, I. F. D. (2019). Occurrence of rice blast on and grain quality of irrigated rice fertilized with nitrogen and silicates. Pesquisa Agropecuária Brasileira, 54, e00295. https://doi.org/10.1590/S1678-3921.pab2019.v54.00295

  • Dorairaj, D., & Ismail, M. R. (2017). Distribution of silicified microstructures, regulation of cinnamyl alcohol dehydrogenase and lodging resistance in silicon and paclobutrazol mediated Oryza sativa. Frontiers in Physiology, 8, 1-19. https://doi.org/10.3389/fphys.2017.00491

  • Ebron, G. (2013). In search of the perfect grain. Rice Today, 12, 15-17.

  • Emam, M. M., Khattab, H. I., Helal, N. M., & Deraz A. E. (2014). Effect of selenium and silicon on yield quality of rice plant grown under drought stress. Australian Journal of Crop Science, 8(4), 596-605.

  • Epstein, E. (1999). Silicon. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 641-664. https://doi.org/10.1146/annurev.arplant.50.1.641

  • Farnaz, A. B., Kadir, J. Nasehi, A. Rahaghi, S. R. H., & Sajili, H. (2012). Effect of silicon on rice blast disease. Pertanika Journal of Tropical Agricultural Science, 35(S), 1-12.

  • Fitzgerald, M. A., & Resurreccion, A. P. (2009). Maintaining the yield of edible rice in warming world. Functional Plant Biology, 36(12), 1037-1045. https://doi.org/10.1071/FP09055

  • Gumel, D. Y., Abdullah, A. M., Mohd. Sood, A., Elhadi, R. E., Jamalani M. A., & Ahmed Ben Youssef, K. A. (2017). Assessing paddy rice yield sensitivity to temperature and rainfall variability in Peninsular Malaysia using DSSAT model. International Journal of Applied Environmental Sciences, 12(8), 1521-1245.

  • Guntzer, F., Keller C., & Meunier J. D. (2012). Benefits of plant silicon for crops: A review. Agronomy for Sustainable Development, 32(1), 201-213. https://doi.org/10.1007/s13593-011-0039-8

  • Han, Y. Q, Wen, J. H, Peng, Z. P, Zhang, D. Y., & Hou, M. L. (2018). Effects of silicon amendment on the occurrence of rice insect pests and diseases in a field test. Journal of Integrative Agriculture, 17(10), 2172-2181. https://doi.org/10.1016/S2095-3119(18)62035-0

  • Haynes, R. J. (2014). A contemporary overview of silicon availability in agricultural soils. Journal Plant Nutrition and Soil Science, 177(6), 831-844. https://doi.org/10.1002/jpln.201400202

  • Heckman, J. R. (2012). The soil profile. Rutgers Cooperative Extension, Plant Biology and Pathology Department, University of New Jersey.

  • Hodson, M. J., White, P. J., Mead, A., & Broadley, M. R. (2005). Phylogenetic variation in the silicon composition of plants. Annals of Botany, 96(6), 1027-1046. https://doi.org/10.1093/aob/mci255

  • Inanaga, S., Higuchi, Y., & Chishaki, N. (2002). Effect of silicon application on reproductive growth of rice plant. Soil Science and Plant Nutrition, 48(3), 341-345. https://doi.org/10.1080/00380768.2002.10409210

  • Ishimaru, T., Horigane, A. K., Ida, M., Iwasawa, N., San-oh, Y. A., Nakazono, M., Nishizawa, N. K., Masumura, T., Kondo, M., & Yoshida, M. (2009). Formation of grain chalkiness and changes in water distribution in developing rice caryopses grown under high-temperature stress. Journal of Cereal Science, 50(2), 166-174. https://doi.org/10.1016/j.jcs.2009.04.011

  • Islam, W., Tayyab, M., Khalil, F., Hua, Z., Huang, Z., & Chen, H. Y. (2020). Silicon-mediated plant defense against pathogens and insect pests. Pesticide Biochemistry and Physiology, 168, 104641. https://doi.org/10.1016/j.pestbp.2020.104641

  • Jafari, H., Dastan, S., Nasiri, A. R., Valaei, L., & Eslamii, H. R. (2013). Nitrogen and silicon application facts on rice growth parameters at Alborz Mountain Range. Electronic Journal of Biology, 9(4), 72–76.

  • Ju, S., Wang, L., & Chen, J. (2020). Effects of silicon on the growth, photosynthesis and chloroplast ultrastructure of Oryza sativa L. seedlings under acid rain stress. Silicon, 12(3), 655-664. https://doi.org/10.1007/s12633-019-00176-8

  • Kaneko, K., Sasaki, M., Kuribayashi, N., Suzuki, H., Sasuga, Y., Shiraya, T., Inomata, T., Itoh, K., Baslam, M., & Mitsui, T. (2016). Proteomic and glycomic characterization of rice chalky grains produced under moderate and high-temperature conditions in field system. Rice, 9(1), 26. https://doi.org/10.1186/s12284-016-0100-y

  • Kim, S. S., Lee, S. E. Kim, O. W., & Kim, D. C. (2000). Physicochemical characteristics of chalky kernels and their effects on sensory quality of cooked rice. Cereal Chemistry, 77(3), 376-379. https://doi.org/10.1094/CCHEM.2000.77.3.376

  • Korndörfer, G. K, Datnoff L. E., & Corrêa, G. F. (1999). Influence of silicon on grain discoloration and upland rice grown on four savanna soils of Brazil. Journal of Plant Nutrition, 22(1), 93-102. https://doi.org/10.1080/01904169909365609

  • Lavinsky, A. O., Detmann, K. C., Reis, J. V., Ávila, R. T., Sanglard, M. L., Pereira, L. F., Sanglard, L. M. V. P., Rodrigues, F. A., Araújo, W. L., & DaMatta, F. M. (2016). Silicon improves rice grain yield and photosynthesis specifically when supplied during the reproductive growth stage. Journal of Plant Physiology, 206, 125-132. https://doi.org/10.1016/j.jplph.2016.09.010

  • Li, N., Feng, A., & Liu, N. (2020). Silicon application improved the yield and nutritional quality while reduced cadmium concentration in rice. Environmental Science and Pollution Research, 27(11), 20370-20379. https://doi.org/10.1007/s11356-020-08357-4

  • Liang, Y., Nikolic, M., Elanger, R. B., Gong, H., & Song, A. (2015). Effect of silicon on crop growth, yield and quality. In Silicon in agriculture (pp. 209-223). Springer. https://doi.org/10.1007/978-94-017-9978-2_11

  • Liang, Y., Sun, W., Zhu, Y. G., & Christie, P. (2007). Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environmental Pollution, 147(2), 422-428. https://doi.org/10.1016/j.envpol.2006.06.008

  • Lisle, A. J., Martin, M., & Fitzgerald, M. A. (2000). Chalky and translucent rice grains differ in starch composition and structure and cooking properties. Cereal Chemistry, 77(5), 627-632. https://doi.org/10.1094/CCHEM.2000.77.5.627

  • Liu, Q., Zhou, X., & Sun, Z. (2017). Application of silicon fertilizer affects nutritional quality of rice. Chilean Journal of Agricultural Research, 77(2), 163-170. http://doi.org/10.4067/S0718-58392017000200163

  • Liu, X., Huang, Z., Li, Y., Xie, W., Li, W., Tang, X., Ashraf, U., Kong, L., Wu, L., Wang, S., & Mo, Z. (2020). Selenium-silicon (Se-Si) induced modulations in physio-biochemical responses, grain yield, quality, aroma formation and lodging in fragrant rice. Ecotoxicology and Environmental Safety, 196, 110525. https://doi.org/10.1016/j.ecoenv.2020.110525

  • Ma, J. F. (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition, 50(1), 11-18. https://doi.org/10.1080/00380768.2004.10408447

  • Ma, J. F., & Takahashi E. (2002). Soil, fertilizer, and plant silicon research in Japan. Elsevier.

  • Ma, J. F., & Yamaji, N. (2006). Silicon uptake and accumulation in higher plants. Trends in Plant Science, 11(8), 392-397. https://doi.org/10.1016/j.tplants.2006.06.007

  • Ma, J. F., & Yamaji, N. (2008). Functions and transport of silicon in plants. A review. Cellular and Molecular Life Sciences, 65(19), 3049-3057. https://doi.org/10.1007/s00018-008-7580-x

  • Ma, J. F., & Yamaji, N. (2015). A cooperative system of silicon transport in plants. Trends in Plant Science, 20(7), 435-442. https://doi.org/10.1016/j.tplants.2015.04.007

  • Ma, J. F., Goto, S., Tamai, K., & Ichii, M. (2001). Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiology, 127(4), 1773-1780. https://doi.org/10.1104/pp.010271

  • Ma, J. F., Nishimura, K., & Takahashi, E. (1989). Effect of silicon on the growth of rice plant at different growth stages. Soil Science and Plant Nutrition, 35(3), 347-356. https://doi.org/10.1080/00380768.1989.10434768

  • Ma, J. F., Tamai, K., Ichii, M., & Wu, G. F. (2002). A rice mutant defective in Si uptake. Plant Physiology, 130(4), 2111-2117. https://doi.org/10.1104/pp.010348

  • Ma, J. F., Yamaji, N., & Mitani-Ueno, N. (2011). Transport of silicon from roots to panicles in plants. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 87(7), 377-385. https://doi.org/10.2183/pjab.87.377

  • Meena, V. D., Dotaniya, M. L., Coumar, V., Rajendiran, S., Ajay, Kundu, S., & Subba Rao, A. (2014). A case for silicon fertilization to improve crop yields in tropical soils. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 84(3), 505-518. https://doi.org/10.1007/s40011-013-0270-y

  • Ministry of Agriculture and Food Industries Malaysia. (2019). Agrofood Statistics 2019. https://www.mafi.gov.my/documents/20182/273021/Perangkaan+Agromakanan +2019. pdf/196be0d7-e223-46fb-88c3-6a592f52b9fe

  • Mizuno, N. (1987). Effects of silica on hull weight and ripening of rice plants. Journal of Plant Nutrition, 10(9-16), 2159. https://doi.org/10.1080/01904168709363767

  • Mo, Z., Lei, S., Ashraf, U., Khan, I., Li, Y., Pan, S., Duan, M., Tian, H., & Tang, X. (2017). Silicon fertilization modulates 2-acetyl-1-pyrroline content, yield formation and grain quality of aromatic rice. Journal of Cereal Science, 75, 17-24. https://doi.org/10.1016/j.jcs.2017.03.014

  • Nhan, P. P., Dong, N. T., Nhan, H. T., & Chi, N. T. M. (2012). Effect of OryMaxSL and SiliysolMS on growth and yield of MTL560 rice. World Applied Sciences Journal, 19(5), 704-709.

  • Ning, D., Liang, Y., Liu, Z., Xiao, J., & Duan, A. (2016). Impacts of steel-slag-based silicate fertilizer on soil acidity and silicon availability and metals-immobilization in a paddy soil. PLOS One, 11(12), 1-15. https://doi.org/10.1371/journal.pone.0168163

  • NurulNahar, E., Adam, P., Mazidah, M., Roslan, I., & Rafii, M. Y. (2020). Rice blast disease in Malaysia: Options for its control. Journal of Tropical Agriculture and Food Science, 48(1), 11-23.

  • Okuda, A., & Takahashi. E. (1961). Studies on the physiological role of Si in crop plants: 1. Discussion on the Si deficient culture method. Journal of the Science of Soil and Manure, 32, 475-480.

  • Patil, A. A., Durgude, A. G., Pharande, A. L., Kadlag, A. D., & Nimbalkar, C. A. (2017). Effect of calcium silicate as a silicon source on growth and yield of rice plants. International Journal of Chemical Studies, 5(6), 545-549.

  • Patindol, J., & Wang, Y. J. (2003). Fine structures and physicochemical properties of starches from chalky and translucent rice kernels. Journal of Agricultural and Food Chemistry, 51, 2777-2784. https://doi.org 10.1021/jf026101t

  • Patindol, J., Siebenmorgen, T. J., & Wang, Y. J. (2015). Impact of environmental factors on rice starch structure: A review. Starch, 67(1-2), 42-54. https://doi.org/10.1002/star.201400174

  • Prabhu, A. S., Barbosa Filho, M. P., Datnoff, L. E., Snyder, G. H., Berni, R. F., Rodrigues, F. A., & Dallagnol, L. J. (2012). Silicon reduces brown spot severity and grain discoloration on several rice genotypes. Tropical Plant Pathology, 37(6), 409-414. https://doi.org/10.1590/S1982-56762012000600005

  • Radziah, M. L., Engku Elini, E. A., Tapsir, S., & Mohamad Zabawi, A. G. (2010). Food security assessment under climate change scenario in Malaysia. Palawija News, 27(1), 1-5.

  • Rajamoorthy, Y., Abdul Rahim, K., & Munusamy, S. (2015). Rice industry in Malaysia: Challenges, policies and implications. Procedia Economics and Finance, 31(15), 861-867. https://doi.org/10.1016/s2212-5671(15)01183-1

  • Sahebi, M., Hanafi, M. M., Siti Nor Akmar, A., Rafii, M. Y., Azizi, P., Tengoua, F. F., Nurul Mayzaitul Azwa, J., & Shabanimofrad, M. (2015). Importance of silicon and mechanisms of biosilica formation in plants. BioMed Research International, 2015, 396010. https://doi.org/10.1155/2015/396010

  • Savant, N. K., Snyder, G. H., & Datnoff, L. E. (1997). Silicon management and sustainable rice production. Advances in agronomy, 58, 151-199. https://doi.org/10.1016/S0065-2113(08)60255-2

  • Seebold, K. W. (1998). The influence of silicon fertilization on the development and control of blast, caused by Magnaporthe grisea (Hebert) Barr, in upland rice [Doctoral’s dissertation, University of Florida]. UF Institutional Repository. https://ufdc.ufl.edu/AA00028902/00001

  • Siregar, A. F., Sipahutar, I. A., Anggria, L., & Yufdi, M. P. (2021). Improving rice growth and yield with silicon addition in Oxisols. In IOP Conference Series: Earth and Environmental Science (Vol. 648, No. 1, p. 012202). IOP Publishing. https://doi.org/10.1088/1755-1315/648/1/012202

  • Snyder, G. H., Jones, D. B., & Gascho, G. J. (1986). Silicon fertilization of rice on Everglades Histosols. Soil Science Society of America Journal, 50(5), 1259-1263. https://doi.org/10.2136/sssaj1986.03615995005000050035x

  • Swain, R., & Rout, G. R. (2018). Effect of silicon interaction with nutrients of rice. Journal of Experimental Biology and Agriculture Sciences, 6(4), 717-731. http://doi.org/10.18006/2018.6(4).717.731

  • Takahashi, E. (1995). Uptake mode and physiological functions of silica. Science Rice Plant, 2, 58-71.

  • US Department of Agriculture. (2021). World production volume of milled rice from 2008/2009 to 2019/2020. https://www.statista.com/statistics/271972/world-husked-rice-production-volume-since-2008/

  • Vaghefi, N., Shamsudin, M. N., Radam, A., & Rahim, K. A. (2013). Impact of climate change on rice yield in the main rice growing areas of Peninsular Malaysia. Research Journal of Environmental Sciences, 7(2), 59-67. https://doi.org/10.3923/rjes.2013.59.67

  • Wei, C., Qin, F., Zhu, L., Zhou, W., Chen, Y., & Wang, Y. (2010). Microstructure and ultrastructure of high-amylose rice resistant starch granules modified by antisense RNA inhibition of starch branching enzyme. Journal of Agricultural and Food Chemistry, 58, 1224-1232. https://doi.org/10.1021/jf9031316

  • Yamakawa, H., & Hakata, M. (2010). Atlas of rice grain filling-related metabolism under high temperature: Joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation. Plant and Cell Physiology, 51(9), 795-809. https://doi.org/10.1093/pcp/pcq034

  • Yamakawa, H., Hirose, T., Kuroda, M., & Yamaguchi, T. (2007). Comprehensive expression profiling of rice grain ripening-related genes under high temperature using DNA microarray. Plant Physiology, 144(1), 258-277. https://doi.org/10.1104/pp.107.098665

  • Yu, T., Jiang, W., Ham, T., Chu, S., Lestari, P. Lee, J., Kim, M., Xu, F., Han, L., Dai, L., & Koh, H. (2008). Comparison of grain quality traits between japonica rice cultivars from Korea and Yunnan Province of China. Journal of Crop Science and Biotechnology, 11(2), 135-140.

  • Zhang, G. L., Dai, Q. G., Wang, J. W., Zhang, H. C., Huo, Z. Y., & Ling, L. (2007). Effects of silicon fertilizer rate on yield and quality of japonica rice Wuyujing 3. Chinese Journal of Rice Science, 21(3), 299-303. https://doi.org/10.3321/j.issn:1001-7216.2007.03.014

  • Zhao, X. & Fitzgerald, M. (2013). Climate change: Implications for the yield of edible rice. PLOS One, 8(6), e66218. https://doi.org/10.1371/journal.pone.0066218

  • Zhaomiao, L., Deyi, Z., Xincheng, Z., Zunxin, W., Jinchao, L., Zhenghui, L. Ganghua, L., Shaohua, W., & Yanfeng, D. (2015). Chalky part differs in chemical composition from translucent part of japonica rice grains as revealed by a notched-belly mutant with white-belly. Journal of the Science of Food and Agriculture, 96(11), 3937-3943. https://doi.org/10.1002/jsfa.7793

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JTAS-2251-2021

Download Full Article PDF

Share this article

Recent Articles