e-ISSN 2231-8526
ISSN 0128-7680
Zaahidah A Mohiju, Lay Sheng Ewe, Roslan Abd-Shukor, Weng Kean Yew, Hai Song Woon and Abi Muttaqin Jalal Bayar
Pertanika Journal of Science & Technology, Volume 33, Issue 1, January 2025
DOI: https://doi.org/10.47836/pjst.33.1.19
Keywords: BSCCO-2223, energy, irradiation impact, superconducting properties
Published on: 23 January 2025
In this study, we explored the potential of irradiation techniques to optimize defect concentration and crystal structure in (Bi,Pb)₂Sr₂Ca₂Cu₃O₁₀ (Bi-2223) superconductors, aiming to enhance their practicality by potentially improving their critical temperature (Tc) in high magnetic fields. Bi-2223 superconductors have higher Tc and less stringent cooling requirements than low-temperature types, yet enhancing Tc under high magnetic fields is still challenging. The study meticulously compared the electrical properties of Bi-2223 samples in bulk form, subjected individually to electron, gamma, and neutron irradiations, prepared via the conventional solid-state reaction method. Subsequent analyses of structural properties through X-ray diffraction revealed changes in cell lattice parameters, while electrical resistance and AC susceptibility measurements provided insights into the critical temperature. Interestingly, a significant decrease in Tc was observed across all irradiated samples instead of an enhancement, challenging our initial hypothesis. Electron and gamma irradiations led to more homogeneously distributed and less porous defects compared to neutron irradiation, which correlated with the observed decrease in Tc—22.9% for neutron, 16.7% for gamma, and 13.5% for electron irradiation. These results highlight the intricate relationship between the type and distribution of defects induced by different irradiations and their varying impacts on superconductor performance. This study illustrates how defects, based on their characteristics, distinctly affect superconducting properties, emphasizing the complexity of defect interactions in superconductors. Our findings highlight the crucial relationship between irradiation-induced defects and the superconducting properties of Bi-2223, suggesting that the impact of Tc reduction on high-temperature superconductor applications needs to be reevaluated.
Aksenova, T. I., Berdauletov, A. K., & Daukeev, D. K. (1995). Effect of gamma irradiation on physical and chemical processes in YBaCuO. Radiation Physics and Chemistry, 46(4-6), 533-536. https://doi.org/10.1016/0969-806X(95)00211-F
Al-Khawaja, U., Benkraouda, M., Obaidat, I. M., & Alneaimi, S. (2006). Numerical simulations on the role of the defect size on the critical current in high-temperature superconductors. Physica C: Superconductivity and its applications, 442(1), 1-8. https://doi.org/10.1016/j.physc.2006.03.134
Amira, A., Boudjadja, Y., Saoudel, A., Varilci, A., Akdogan, M., Terzioglu, C., & Mosbah, M. F. (2011). Effect of doping by low content of yttrium at Ca and Sr sites of Bi (Pb)-2212 superconducting ceramics. Physica B: Condensed Matter, 406(4), 1022-1027. https://doi.org/10.1016/j.physb.2010.12.052
Anis-ur-Rehman, M., & Mubeen, M. (2012). Synthesis and enhancement of current density in cerium doped Bi (Pb) Sr (Ba)-2 2 2 3 high Tc superconductor. Synthetic Metals, 162(19-20), 1769-1774. https://doi.org/10.1016/j.synthmet.2012.03.006
Armstrong, R. W. (1970). The influence of polycrystal grain size on several mechanical properties of materials. Metallurgical Transactions, 1(5), 1169–1176. https://doi.org/10.1007/BF02900227
Braginski, A. I. (2019). Superconductor electronics: Status and outlook. Journal of Superconductivity and Novel Magnetism, 32(1), 23–44. https://doi.org/10.1007/s10948-018-4884-4
Buckel, W., & Kleiner, R. (2012). Supraleitung: Grundlagen und anwendungen (7th ed.). Wiley.
Camargo-Martínez, J. A., & Baquero, R. (2016). Effects of Pb doping on structural and electronic properties of Bi2Sr2Ca2Cu3O10. Physica C: Superconductivity and Its Applications, 521, 22–28. https://doi.org/10.1016/j.physc.2015.12.006
Fallah-Arani, H., Baghshahi, S., Sedghi, A., & Riahi-Noori, N. (2019). Enhancement in the performance of BSCCO (Bi-2223) superconductor with functionalized TiO2 nanorod additive. Ceramics International, 45(17), 21878-21886. https://doi.org/10.1016/j.ceramint.2019.07.198
Farbod, M., Rafati, Z., & Shoushtari, M. Z. (2016). Optimization of parameters for the synthesis of Y2Cu2O5 nanoparticles by Taguchi method and comparison of their magnetic and optical properties with their bulk counterpart. Journal of Magnetism and Magnetic Materials, 407, 266-271. https://doi.org/10.1016/j.jmmm.2016.01.069
Fischer, D. X., Prokopec, R., Emhofer, J., & Eisterer, M. (2018). The effect of fast neutron irradiation on the superconducting properties of REBCO coated conductors with and without artificial pinning centers. Superconductor Science and Technology, 31(4), Article 044006. https://doi.org/10.1088/1361-6668/aaadf2
Hannachi, E., Slimani, Y., Azzouz, F. B., & Ekicibil, A. H. M. E. T. (2018). Higher intra-granular and inter-granular performances of YBCO superconductor with TiO2 nano-sized particles addition. Ceramics International, 44(15), 18836-18843. https://doi.org/10.1016/j.ceramint.2018.07.118
Hansen, N. (2004). Hall–Petch relation and boundary strengthening. Scripta materialia, 51(8), 801-806. https://doi.org/10.1016/j.scriptamat.2004.06.002
Hayashi, K. (2020). Commercialization of Bi-2223 superconducting wires and their applications. Sei Technical Review, 91, 68-74.
Imaduddin, A., Herbirowo, S., Nugraha, H., Hendrik, H., Aisatun, A., Giovanni, A. R., Effendi, M., Sari, K., Pramono, A. W., & Yuwono, A. H. (2023). Evolution of morphological, crystal structure, and electrical
properties of Ba-Pb-Bi-O superconducting materials. South African Journal of Chemical Engineering, 46(1), 112-121. https://doi.org/10.1016/j.sajce.2023.07.014
Jin, L. H., Liu, G. Q., Xu, X. Y., Jiao, G. F., Zheng, H. L., Hao, Q. B., Zhang, S. N., Li, C. S., & Zhang, P. X. (2021). Evolution of precursor powders prepared by oxalate freeze drying towards high performance Bi-2212 wires. Ceramics International, 47(3), 3299-3305. https://doi.org/10.1016/j.ceramint.2020.09.170
Juárez-Lopez, J. M., Guillén-Cervantes, A., Quiñones-Galván, J. G., Nieto-Zepeda, K. E., Zelaya-Angel, O., Santos-Cruz, J., Diaz-Valdes, E., Contreras-Puente, G., & Moure-Flores, D. F. (2020). Structural and morphological characterization of YBa2Cu3O7-x films deposited by screen printing from YBa2Cu3O6. 962 superconductor in bulk. Materials Research Express, 7(9), Article 096001. https://doi.org/10.1088/2053-1591/abadd0
Karkin, A. E., Werner, J., Behr, G., & Goshchitskii, B. N. (2009). Neutron-irradiation effects in polycrystalline LaFeAsO0.9F0.1 superconductors. Physical Review B—Condensed Matter and Materials Physics, 80(17), Article 174512. https://doi.org/10.1103/PhysRevB.80.174512
Kitô, H., Iyo, A., Tokumoto, M., Okayasu, S., & Ihara, H. (2001). Effect of the neutron irradiation of the high temperature superconductor (Cu,C)Ba2Can−1CunO2n+4−δ (n=3, 4 and 5). Physica C: Superconductivity, 357, 234–236. https://doi.org/10.1016/S0921-4534(01)00217-9
Koshelev, A. E., Sadovskyy, I. A., Phillips, C. L., & Glatz, A. (2016). Optimization of vortex pinning by nanoparticles using simulations of the time-dependent Ginzburg-Landau model. Physical Review B, 93(6), Article 060508. https://doi.org/10.1103/PhysRevB.93.060508
Lin, H., Yao, C., Zhang, X., Zhang, H., Zhang, Q., Wang, D., Dong, C., & Ma, Y. (2016). Effect of metal (Zn/In/Pb) additions on the microstructures and superconducting properties of Sr1−xKxFe2As2 tapes. Scripta Materialia, 112, 128–131. https://doi.org/10.1016/j.scriptamat.2015.09.031
Mohiju, Z. A., Hamid, N. A., & Abdullah, Y. (2017) Enhancement of flux pinning properties in nanosized MgO added Bi-2212 superconductor through neutron irradiation. AIP Conference Proceedings, 1799(1), Article 040004. https://doi.org/10.1063/1.4972928
Mohiju, Z. A., Hamid, N. A., Abdullah, Y., & Kannan, V. (2015). Effect of electron irradiation exposure on phase formation, microstructure and mechanical strength of Bi2Sr2CaCu2O8 superconductor prepared via co-precipitation method. AIP Conference Proceedings, 1659(1), Article 040006. https://doi.org/10.1063/1.4916866
Molodyk, A., Samoilenkov, S., Markelov, A., Degtyarenko, P., Lee, S., Petrykin, V., Gaifullin, M., Mankevich, A., Vaivilov, A., Sorbom, B., Cheng, J., Garberg, S., Kesler, L., Hartwig, Z., Gavrilkin, S., Tsvetkov, A., Okada, T., Awaji, S., Abraimov, D., … & Vasiliev, A. (2021). Development and large volume production of extremely high current density YBa2Cu3O7 superconducting wires for fusion. Scientific reports, 11(1), Article 2084. https://doi.org/10.1038/s41598-021-81559-z
Nurbaisyatul, E. S., Azhan, H., Ibrahim, N., & Saipuddin, S. F. (2021). Structural and superconducting properties of low-density Bi (Pb)-2223 superconductor: Effect of Eu2O3 nanoparticles addition. Cryogenics, 119, Article 103353. https://doi.org/10.1016/j.cryogenics.2021.103353
Rajput, M., Swami, H. L., Kumar, R., Bano, A., Vala, S., Abhangi, M., Prasad, U., Kumar, R., & Srinivasan, R. (2022). Deuterium ion irradiation impact on the current-carrying capacity of DI-BSCCO superconducting tape. Nuclear Engineering and Technology, 54(7), 2586-2591. https://doi.org/10.1016/j.net.2022.02.008
Sakurai, K., Yamashita, A., Mizuguchi, Y., Yabuuchi, K., & Oono-Hori, N. (2024). Irradiation effects on copper oxide superconductors including high-entropy REBCO (HE-REBCO). Nuclear Materials and Energy, 40, Article 101709. https://doi.org/10.1016/j.nme.2024.101709
Salleh, F. M., Yahya, A. K., Imad, H., & Jumali, M. H. (2005). Synthesis and formation of TlSr1212 superconductors from coprecipitated oxalate precursors. Physica C: Superconductivity, 426, 319-324. https://doi.org/10.1016/j.physc.2005.02.043
Shen, M., Zhao, G., Lei, L., Ji, H., & Ren, P. (2021). The intrinsic Josephson effect of Bi-2212 superconducting thin films prepared by sol-gel method. Ceramics International, 47(24), 35067-35072. https://doi.org/10.1016/j.ceramint.2021.09.048
Takahira, S., Ichino, Y., & Yoshida, Y. (2015). Fabrication of high Jc (Bi, Pb) 2223 thin films by PLD and post-annealing process. Physics Procedia, 65, 153-156. https://doi.org/10.1016/j.phpro.2015.05.089
Wang, L., Qi, Y., Zhang, Z., Wang, D., Zhang, X., Gao, Z., Yao, C., & Ma, Y. (2010). Influence of Pb addition on the superconducting properties of polycrystalline Sr0.6K0.4Fe2As2. Superconductor Science and Technology, 23(5), Article 054010. https://doi.org/10.1088/0953-2048/23/5/054010
Wang, T., Chen, L. Q., & Liu, Z. K. (2007). Lattice parameters and local lattice distortions in fcc-Ni solutions. Metallurgical and Materials Transactions, A, 38, 562-569. https://doi.org/10.1007/s11661-007-9091-z
Zhang, H., Li, G., Zhou, T. F., Liu, Y., Li, X. G., & Chen, Y. (2007). Effects of neutron irradiation on superconducting properties of GdBa2Cu3O7-δ single domain superconductor. Chinese Journal of Chemical Physics, 20(3), 324. https://doi.org/10.1088/1674-0068/20/03/324-328
Zhang, S., Ma, X., Shao, B., Cui, L., Liu, G., Zheng, H., Liu, X., Feng, J., Li, C., & Zhang, P. (2021). Fabrication of multifilamentary powder in tube superconducting tapes of Bi-2223 with Sr deficient starting composition. Cryogenics, 114, Article 103245. https://doi.org/10.1016/j.cryogenics.2020.103245
ISSN 0128-7680
e-ISSN 2231-8526