PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 32 (5) Aug. 2024 / JST-4862-2023

 

Comparative Analysis of Contaminant Levels in Leachate and Soil from Young and Old Landfills

Amir Detho, Aeslina Abdul Kadir and Muhammad Aizat Azhar

Pertanika Journal of Science & Technology, Volume 32, Issue 5, August 2024

DOI: https://doi.org/10.47836/pjst.32.5.20

Keywords: Heavy metal, mature landfill, organic material, soil characterisation, young landfill

Published on: 26 August 2024

The leachate generated in municipal solid waste landfills tends to have extremely elevated levels of organic and inorganic pollutants influenced by the age and variety of landfills. This research aims to conduct a comparative analysis between two landfills, Krubong Landfill Sites (KLS) and Bukit Bakri Landfill Sites (BBLS). Based on the standard limit set by the Malaysia Environment Quality Act (MEQA), the average values of the leachate parameters at KLS and BBLS were recorded. These parameters include pH (8.84 for KLS and 9.08 for BBLS), temperature (30.22°C for KLS and 30.06°C for BBLS), Chemical Oxygen Demand (COD) (3695 mg L-1 for KLS and 11289 mg L-1 for BBLS), Biological Oxygen Demand (BOD) (1695 mg L-1 for KLS and 3325 mg L-1 for BBLS), and ammonia nitrogen (1107 mg L-1 for KLS and 1390 mg L-1 for BBLS). The findings of this research suggest that the age of the landfill indeed influences the characteristics of leachate and soil. KLS, being a mature landfill, demonstrated low biodegradability. On the other hand, BBLS, being a young landfill, exhibited high biodegradability. The highest heavy metal concentration in the soil sample of KLS was Barium (Ba), with 409 ppm, followed by Zirconium (Zr) at 297 ppm and Vanadium (V) at 114 ppm. For BBLS, Zirconium (Zr) and Thorium (Th) were 209 ppm, Rubidium (Rb) was detected at 86 ppm, and Chromium (Cr) was 57 ppm. In overall essence, the age of a landfill significantly influences its characteristics. Newly established landfills tend to contain a greater quantity of organic matter compared to older ones.

  • Aziz, S. Q., Aziz, H. A., Yusoff, M. S., Bashir, M. J., & Umar, M. (2010). Leachate characterization in semi-aerobic and anaerobic sanitary landfills: A comparative study. Journal of Environmental Management, 91(12), 2608-2614.

  • Bashir, M. J., Aziz, H. A., Yusoff, M. S., & Adlan, M. N. (2010). Application of response surface methodology (RSM) for optimization of ammoniacal nitrogen removal from semi-aerobic landfill leachate using ion exchange resin. Desalination, 254(1-3), 154-161. https://doi.org/10.1016/j.desal.2009.12.002

  • Daud, Z., Detho, A., Rosli, M. A., Awang, H., Ridzuan, M. B. B., & Tajarudin, H. A. (2022). Optimization of mixing ratio, shaking speed, contact time, and pH on reduction of Chemical Oxygen Demand (COD) and Ammoniacal Nitrogen (NH3-N) in leachate treatment. Journal of the Air & Waste Management Association, 72(1), 24-33. https://doi.org/10.1080/10962247.2020.1862362

  • Daud, Z., Detho, A., Rosli, M. A., Abubakar, M. H., Samo, K. A., Rais, N. F. M., & Tajarudin, H. A. (2020). Ammoniacal nitrogen and COD removal from stabilized landfill leachate using granular activated carbon and green mussel (Perna viridis) shell powder as a composite adsorbent. Desalination Water Treat, 192, 111-117. https://doi.org/10.5004/dwt.2020.25470

  • Detho, A., Daud, Z., Rosli, M. A., Ridzuan, M. B., Awang, H., Kamaruddin, M. A., & Halim, A. A. (2021a). COD and ammoniacal nitrogen reduction from stabilized landfill leachate using carbon mineral composite adsorbent. Desalination and water Treatment, 210, 143-151. https://doi.org/10.5004/dwt.2021.26500

  • Detho, A., Daud, Z., Rosli, M. A., Ridzuan, M. B. B., & Awang, H. (2021b). Reduction of COD and ammoniacal nitrogen from landfill leachate using granular activated carbon and green mussel adsorbent. Desalination and Water Treatment, 223, 218-226. https://doi.org/10.5004/dwt.2021.27140

  • Dorioz, J. M., Wang, D., Poulenard, J., & Trevisan, D. (2006). The effect of grass buffer strips on phosphorus dynamics—A critical review and synthesis as a basis for application in agricultural landscapes in France. Agriculture, Ecosystems & Environment, 117(1), 4-21. https://doi.org/10.1016/j.agee.2006.03.029

  • Eaton, A. D., & Franson, M. A. H. (Eds.) (2005). Standard methods for the examination of water and wastewater (21st edition). American Public Health Association.

  • Ghafari, S., Aziz, H. A., & Bashir, M. J. K. (2010). The use of poly-aluminum chloride and alum for the treatment of partially stabilized leachate: A comparative study. Desalination, 257(1-3), 110-116. https://doi.org/10.1016/j.desal.2010.02.037

  • Hashim, A. A., Abdul Kadir, A., Sarani, N. A., Hassan, M. I. H., Kersnansamy, A., & Abdullah, M. M. A. B. (2022). Immobilization of metals in fired clay brick incorporated with aluminium-rich electroplating sludge: properties and leaching analysis. Sustainability, 14(14), Article 8732. https://doi.org/10.3390/su14148732

  • Hussein, M., Yoneda, K., Zaki, Z. M., & Amir, A. (2019). Leachate characterizations and pollution indices of active and closed unlined landfills in Malaysia. Environmental Nanotechnology, Monitoring & Management, 12, Article 100232. https://doi.org/10.1016/j.enmm.2019.100232

  • Kanmani, S., & Gandhimathi, R. (2013). Assessment of heavy metal contamination in soil due to leachate migration from an open dumping site. Applied Water Science, 3, 193-205. https://doi.org/10.1007/s13201-012-0072-z

  • Keerio, H. A., Bae, W., & Panhwar, S. (2022). Nitrite accumulation at low ammonia concentrations in wastewater treatment plants. Sustainability, 14(24), Article 16449. https://doi.org/10.3390/su142416449

  • Keerio, H. A., Bae, W., Park, J., & Kim, M. (2020). Substrate uptake, loss, and reserve in ammonia-oxidizing bacteria (AOB) under different substrate availabilities. Process Biochemistry, 91, 303-310. https://doi.org/10.1016/j.procbio.2019.12.023

  • Kulikowska, D., & Klimiuk, E. (2008). The effect of landfill age on municipal leachate composition. Bioresource Technology, 99(13), 5981-5985. https://doi.org/10.1016/j.biortech.2007.10.015

  • Lindamulla, L., Nanayakkara, N., Othman, M., Jinadasa, S., Herath, G., & Jegatheesan, V. (2022). Municipal solid waste landfill leachate characteristics and their treatment options in tropical countries. Current Pollution Reports, 8, 273-287. https://doi.org/10.1007/s40726-022-00222-x

  • Naveen, B. P., Mahapatra, D. M., Sitharam, T. G., Sivapullaiah, P. V., & Ramachandra, T. V. (2017). Physico-chemical and biological characterization of urban municipal landfill leachate. Environmental Pollution, 220(Part A), 1-12. https://doi.org/10.1016/j.envpol.2016.09.002

  • Norsa’adah, B., Salinah, O., Naing, N. N., & Sarimah, A. (2020). Community health survey of residents living near a solid waste open dumpsite in Sabak, Kelantan, Malaysia. International Journal of Environmental Research and Public Health, 17(1), Article 311. https://doi.org/10.3390/ijerph17010311

  • Ramaiah, G. V., & Krishnaiah, S. (2014). Characterization of contaminated soil and surface water/ground water surrounding waste dump sites in Bangalore. International Journal of Environmental Research and Development, 4(2), 99-104.

  • Sackey, L. N., & Miezah, K. (2022). Determining the quality of leachate at Sarbah landfill site at Weija, Ghana. Emerging Challenges in Environment and Earth Science, 4, 1-13.

  • Salami, L., & Susu, A. A. (2019). A comprehensive study of leachate characteristics from three soluos dumpsites in Igando Area of Lagos State, Nigeria. Greener Journal of Environmental Management and Public Safety, 8(1), 1-14. http://doi.org/10.15580/GJEMPS.2019.1.110118520

  • Siddiqua, A., Hahladakis, J. N., & Al-Attiya, W. A. K. A. (2022). An overview of the environmental pollution and health effects associated with waste landfilling and open dumping. Environmental Science and Pollution Research, 29, 58514-58536. https://doi.org/10.1007/s11356-022-21578-z

  • Tchobanoglous, G., Theisen, H., & Vigil, S. A. (1993). Integrated solid waste management: Engineering principles and management issues (2nd ed.). McGraw-Hill.

  • Zainol, N. A., Aziz, H. A., & Ibrahim, N. (2013). Treatment of Kulim and Kuala Sepetang landfills leachates in Malaysia using poly-aluminium chloride (PACl). Research Journal of Chemical Sciences, 3(3), 52-57.

  • Zin, N. S. M., Aziz, H. A., Adlan, M. N., Ariffin, A., Yusoff, M. S., & Dahlan, I. (2013). A comparative study of Matang and Kuala Sembeling landfills leachate characteristics. Applied Mechanics and Materials, 361, 776-781. https://doi.org/10.4028/www.scientific.net/AMM.361-363.776

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-4862-2023

Download Full Article PDF

Share this article

Related Articles