PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 32 (1) Jan. 2024 / JST-4283-2023

 

Development of GIS-based Ground Flash Density and its Statistical Analysis for Lightning Performance Evaluation of Transmission Lines in Peninsular Malaysia

Nurzanariah Roslan, Ungku Anisa Ungku Amirulddin, Mohd Zainal Abidin Ab. Kadir and Noradlina Abdullah

Pertanika Journal of Science & Technology, Volume 32, Issue 1, January 2024

DOI: https://doi.org/10.47836/pjst.32.1.21

Keywords: Energy, GIS, ground flash density, lightning, statistical, transmission line

Published on: 15 January 2024

Malaysia is one of the world's highest lightning regions, making it an ideal location for studying lightning activities, as they cause many power outages on overhead transmission lines. This study presents ground flash density (GFD) mapping and statistical analysis of lightning flash data in Peninsular Malaysia, which will be used to evaluate the lightning performance of transmission lines. Using Geographical Information System (GIS) software, the GFD map and lightning flash data for statistical analysis were extracted. MATLAB was then used to perform statistical analysis and obtain the probability of peak lightning current using the generalized extreme value (GEV) distribution. This study analyzed six years of lightning flash data from 2012 to 2017 recorded by the Lightning Location System (LLS) and used the Peninsular Malaysia base map from the Department of Survey and Mapping Malaysia (JUPEM). Results show that the GFD mapping approach effectively classifies GFD distribution and identifies areas with high lightning activity. 81% of 4,536,380 lightning flashes were negative polarity, with a higher mean peak current magnitude than positive ones. More lightning activity was observed during the Southwest Monsoon (June-September) and the first Inter-Monsoon season (April-May). Pahang had the most lightning flashes due to its large land area. The GFD map overlaid on the transmission line demonstrated how lightning performance on the transmission line can be assessed. These findings are useful for utility and protection engineers to improve the performance of transmission lines.

  • Abdullah, N. (2019). Technical report for technical assessment of lightning protection technical expert grade E16(S). Lightning & Earthing Unit, TNB Research Sdn. Bhd.

  • Abdullah, N., & Hatta, N. M. (2012, December 2-5). Cloud-to-ground lightning occurrences in Peninsular Malaysia and its use in improvement of distribution line lightning performances. [Paper presentation]. IEEE International Conference on Power and Energy (PECon), Kota Kinabalu, Malaysia. https://doi.org/10.1109/PECon.2012.6450330

  • Abdullah, N., Yahaya, M. P., & Hudi, N. S. (2008, December 1-3). Implementation and use of lightning detection network in Malaysia. [Paper presentation]. IEEE 2nd International Power and Energy Conference, Johor Bahru, Malaysia. https://doi.org/10.1109/PECON.2008.4762504

  • Ab-Kadir, M. Z. A. (2016). Lightning severity in Malaysia and some parameters of interest for engineering applications. Thermal Science, 20(2), 437-450. https://doi.org/10.2298/TSCI151026028A

  • Ahmed, N. Y., Illias, H. A., & Mokhlis, H. (2023). A protocol for selecting viable transmission line arrester for optimal lightning protection. Electric Power Systems Research, 221, 109489. https://doi.org/10.1016/j.epsr.2023.109489

  • Ali, H. M. S. A., Aman, M. M., Ahmed, S. J., Shaikh, S., & Munir, A. (2018, June 12-15). Lightning flash density map of Pakistan on ARC-GIS® software - An empirical approach. [Paper presentation]. IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), Palermo, Italy. https://doi.org/10.1109/EEEIC.2018.8494579

  • Ardila, B., Soto, E., & Zamora, J. (2023). Modeling lightning flashes in transmission structures. Electric Power Systems Research, 223, 109636. https://doi.org/10.1016/j.epsr.2023.109636

  • Biswas, R. N., Islam, M. N., Mia, M. J., & Islam, M. N. (2020). Modeling on the spatial vulnerability of lightning disaster in Bangladesh using GIS and IDW techniques. Spatial Information Research, 28(5), 507-521. https://doi.org/10.1007/s41324-019-00311-y

  • Bouquegneau, C. (2014, October 11-18). Lightning density based on lightning location systems. [Paper presentation]. International Conference on Lightning Protection (ICLP), Shanghai, China. https://doi.org/10.1109/ICLP.2014.6973446

  • Chan, H. G., & Mohamed, A. I. B. (2018). Investigation on the occurrence of positive cloud to ground (+CG) lightning in UMP Pekan. Journal of Atmospheric and Solar-Terrestrial Physics, 179, 206-213. https://doi.org/10.1016/j.jastp.2018.07.016

  • Chang, K. T. (2008). Introduction to Geographic Information Systems (Vol. 4). McGraw-Hill.

  • Dewan, A., Islam, K. M. A., Fariha, T. R., Murshed, M. M., Ishtiaque, A., Adnan, M. S. G., Kabir, Z., & Chowdhury, M. B. H. (2022). Spatial pattern and land surface features associated with cloud-to-ground lightning in Bangladesh: An exploratory study. Earth Systems and Environment, 6(2), 437-451. https://doi.org/10.1007/s41748-022-00310-4

  • Diendorfer, G., Pichler, H., Achleitner, G., & Broneder, M. (2014, October 11-18). Lightning caused outages in the Austrian Power Grid transmission line network. [Paper presentation]. International Conference on Lightning Protection (ICLP), Shanghai, China. https://doi.org/10.1109/ICLP.2014.6973112

  • Edirisinghe, M., & Maduranga, U. G. D. (2021). Distribution of lightning accidents in Sri Lanka from 1974 to 2019 using the DesInventar database. ISPRS International Journal of Geo-Information, 10(3), Article 117. https://doi.org/10.3390/ijgi10030117

  • ESRI. (2010). The geographic approach TM to electric distribution. Esri. https://www.esri.com

  • Farukh, M. A., Ahmed, S. U., Islam, M. A., & Baten, M. A. (2017). Spatial vulnerability assessment of extreme lightning events in Bangladesh using GIS. Journal of Environmental Science and Natural Resources, 10(2), 11-18. https://doi.org/10.3329/jesnr.v10i2.39008

  • Hatta, N. M., Abdullah, N., Osman, M., & Abidin Ab Kadir, M. Z. (2019). Statistical Lightning Study for 33kV Overhead Line in Peninsular Malaysia. [Paper presentation]. 2019 11th Asia-Pacific International Conference on Lightning (APL), 1–3. https://doi.org/10.1109/APL.2019.8816020

  • He, J. L., & Zeng, R. (2010). Lightning Shielding Failure Analysis of 1000 kV Ultra-High Voltage AC Transmission Line. CIGRE. https://cigreindia.org/CIGRE%20Lib/CIGRE%20Session%202010%20paper/C4_201_2010.pdf

  • Hodanish, S. J., Vogt, B. J., & Wolyn, P. (2019). Colorado lightning climatology. Journal of Operational Meteorology, 7(4), 45-60. https://doi.org/10.15191/nwajom.2019.0704

  • Husain, F., Sulaiman, N. A., Hashim, K. A., & Samad, A. M. (2012, July 16-17). A study on TNB transmission line route sustainability and suitability using GIS-AHP. [Paper presentation]. IEEE Control and System Graduate Research Colloquium, Shah Alam, Malaysia. https://doi.org/10.1109/ICSGRC.2012.6287193

  • International Electrotechnical Commission. (2015). Lightning Density based on Lightning Location Systems (LLS) - General principles. ICE. https://webstore.iec.ch/publication/23064

  • IEEE Power Engineering Society (1997). IEEE Std 1243-1997: IEEE guide for improving the lightning performance of transmission lines. IEEE Xplore. https://ieeexplore.ieee.org/document/640303

  • Isa, N. A., Baharudin, Z. A., Zainuddin, H., Sutikno, T., Zainon, M., & Zulkefle, A. A. (2021). Distribution of attempted leader with monsoon seasons and negative cloud-to-ground flashes in Melaka, Malaysia. Indonesian Journal of Electrical Engineering and Computer Science, 23(3), 1324-1330. https://doi.org/10.11591/ijeecs.v23.i3.pp1324-1330

  • Islam, M. A., Chan, A., Khaw, S. K. K., Salleh, S. A., Zakaria, N. H., Isa, N. A., Gee, M. O. C., & Azari, M. (2019). Importance of lightning detection network development in Peninsular Malaysia. IOP Conference Series: Earth and Environmental Science, 385(1), Article 012036. https://doi.org/10.1088/1755-1315/385/1/012036

  • Javor, V., Stoimenov, L., Dzakovic, N., Dinkic, N., Javor, D., & Betz, H. D. (2018). LINETGIS analysis of lightning flash density in Serbia based on ten years data. Serbian Journal of Electrical Engineering, 15(2), 201-211. https://doi.org/10.2298/SJEE1802201J

  • Johari, D., Aiman Misri Amir, M. F., Hashim, N., Baharom, R., & Haris, F. A. (2021, March 8-9). Positive cloud-to-ground lightning observed in Shah Alam, Malaysia based on SAFIR 3000 lightning location system. [Paper presentation]. IEEE International Conference in Power Engineering Application (ICPEA), Shah Alam, Malaysia. https://doi.org/10.1109/ICPEA51500.2021.9417761

  • Kakumoto, Y., Koyamatsu, Y., Shiota, A., Qudaih, Y., & Mitani, Y. (2016). Application of geographic information system to power distribution system analysis. Energy Procedia, 100, 360-365. https://doi.org/10.1016/j.egypro.2016.10.189

  • Kamra, A. K., & Kumar, P. R. (2021). Regional variability in lightning activity over South Asia. International Journal of Climatology, 41(1), 625-646. https://doi.org/10.1002/joc.6641

  • Kezunovic, M., Djokic, T., Chen, P. C., & Malbasa, V. (2015, January 5-8). Improved transmission line fault location using automated correlation of big data from lightning strikes and fault-induced traveling waves. [Paper presentation]. 48th Hawaii International Conference on System Sciences, Kauai, USA. https://doi.org/10.1109/HICSS.2015.328

  • Korir, J. K., & Ngigi, M. M. (2015). The use of GIS in high voltage transmission line routing in Kenya: A case study of 132 kV Kilimambogo-Thika-Kiganjo Line. African Journal of Geography and Regional Planning, 2(1), 207-217.

  • Leite, J. B., Mantovani, J. R. S., Dokic, T., Yan, Q., Chen, P. C., & Kezunovic, M. (2019). Resiliency assessment in distribution networks using GIS-based predictive risk analytics. IEEE Transactions on Power Systems, 34(6), 4249-4257. https://doi.org/10.1109/TPWRS.2019.2913090

  • Li, L., Feng, C., Wei-Ning, S., Yao-Qiang, X., & Xing-Zhi, W. (2014, October 20-22). Study on evaluation system of meteorological hazards for power grid based on Cloud GIS. [Paper presentation]. International Conference on Power System Technology, Chengdu, China. https://doi.org/10.1109/POWERCON.2014.6993685

  • Lin, Z., & Xu, Z. (2016). A meteorological risk assessment method for power lines based on GIS and multi-sensor integration. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 3(8), 19-26. https://doi.org/10.5194/isprsannals-III-8-19-2016

  • Mammadov, R., Safarov, S., Safarov, E., & Rasouli, A. A. (2021). Visualizing the lightning flashes over the Republic of Azerbaijan by analyzing the lightning imaging sensor data. ANAS Transactions, Earth Sciences, 1, 93-105. https://doi.org/10.33677/ggianas20210100058

  • Mishra, M., Acharyya, T., Santos, C. A. G., Silva, R. M. da, Chand, P., Bhattacharyya, D., Srivastava, S., & Singh, O. (2022). Mapping main risk areas of lightning fatalities between 2000 and 2020 over Odisha state (India): A diagnostic approach to reduce lightning fatalities using statistical and spatiotemporal analyses. International Journal of Disaster Risk Reduction, 79, Article 103145. https://doi.org/10.1016/j.ijdrr.2022.103145

  • Misztal, K., & Siłuch, M. (2021). Spatial analysis of atmospheric discharges in Lubelszczyzna in 2018. Applied Geomatics, 13(4), 969-979. https://doi.org/10.1007/s12518-021-00378-z

  • Phillips, A. (2004). Handbook for Improving Overhead Transmission Line Lightning Performance. (Technical Report No. 1002019). EPRI.

  • Provost, S. B., Saboor, A., Cordeiro, G. M., & Mansoor, M. (2018). On the q-generalized extreme value distribution. REVSTAT-Statistical Journal, 16(1), 45-70. https://doi.org/https://doi.org/10.57805/revstat.v16i1.232

  • Rahman, M. A., Maulud, K. A., Bahri, M. S., Hussain, M., Oon, A. R., Suhatdi, S., Hashim, C. C., & Mohd, F. (2020). Development of GIS database for infrastructure management: Power distribution network system. IOP Conference Series: Earth and Environmental Science, 540(1), Article 012067. https://doi.org/10.1088/1755-1315/540/1/012067

  • Rawi, I. M., Abidin Ab Kadir, M. Z., Gomes, C., & Azis, N. (2018). A case study on 500 kV line performance related to lightning in Malaysia. IEEE Transactions on Power Delivery, 33(5), 2180-2186. https://doi.org/10.1109/TPWRD.2017.2787660

  • Rawi, I. M., Kadir, M. Z. A. A., & Izadi, M. (2017). Seasonal variation of transmission line outages in Peninsular Malaysia. Pertanika Journal Science & Technology, 25(S), 213-220.

  • Sardi, J., Kadir, A. M. Z. A., Ahmad, W. W. F., Hizam, H., Rawi, I. M., & Ahmad, A. (2008, December 1-3). Backflashover analysis for 132 kV Kuala Krai-Gua Musang transmission line. [Paper presentation]. IEEE 2nd International Power and Energy Conference, Johor Bahru, Malaysia. https://doi.org/10.1109/PECON.2008.4762716

  • Shukla, R. K., Trivedi, M., & Kumar, M. (2010). On the proficient use of GEV distribution: A case study of subtropical monsoon region in India. Computer Science Series, 8(1), 81-92.

  • The MathWorks Inc. (2021). MATLAB (Version R2021a). MathWorks. https://www.mathworks.com/

  • Tofani, K. M., Jintaka, D. R., Hartono, J., Munir, B. S., & Bramantyo S. D. A. Harsono, B. (2018). Lightning activity evaluation in South Sumatera Region. 2018 2nd Borneo International Conference on Applied Mathematics and Engineering (BICAME) (pp. 313–316). IEEE. https://doi.org/10.1109/BICAME45512.2018.1570505913

  • Warmi, Y., & Michishita, K. (2018). Tower-footing resistance and lightning trip-outs of 150 kV transmission lines in West Sumatra in Indonesia. MATEC Web of Conferences, 215, Article 01022. https://doi.org/10.1051/matecconf/201821501022

  • Wooi, C. L., Abdul-Malek, Z., Ahmad, N. A., Mokhtari, M., & Khavari, A. H. (2016). Cloud-to-ground lightning in Malaysia: A review study. Applied Mechanics and Materials, 818, 140-145. https://doi.org/10.4028/www.scientific.net/AMM.818.140

  • Xie, M., Zhou, G., Li, D., & Gong, J. (2000). Design and implementation of attribute database management system in a GIS system: GeoStar. Geographic Information Sciences, 6(2), 170-180. https://doi.org/10.1080/10824000009480547

  • Yan, Q., Dokic, T., & Kezunovic, M. (2016, April 18-20). GIS-based risk assessment for electric power consumers under severe weather conditions. [Paper presentation]. 18th Mediterranean Electrotechnical Conference (MELECON), Lemesos, Cyprus. https://doi.org/10.1109/MELCON.2016.7495473

  • Yatim, F. M., Majid, Z., & Amerudin, S. (2019). The key success factor of geographic information system re-implementation in Tenaga Nasional Berhad Distribution, Malaysia: A case study of Cheras Tenaga Nasional Berhad Distribution station. International Journal of Built Environment and Sustainability, 6(1-2), 111-119. https://doi.org/10.11113/ijbes.v6.n1-2.390

  • Yao, X. A. (2020). Georeferencing and geocoding. In A. Kobayashi (Ed.), International encyclopedia of human geography (pp.111-117). Elsevier. https://doi.org/10.1016/B978-0-08-102295-5.10548-7

  • Yendra, R., Hanaish, I. S., & Fudholi, A. (2021). Power bayesian markov chain monte carlo (MCMC) for modelling extreme temperatures in Sumatra Island using generalised extreme value (GEV) and generalised logistic (GLO) distributions. Mathematical Modelling of Engineering Problems, 8(3), 365-376. https://doi.org/10.18280/mmep.080305

  • Zheng, Y., Wu, Z., Shu, S., Xu, J., Fang, C., & Xie, W. (2021). Lightning risk assessment model for transmission lines with lift‐based improved analytic hierarchy process. IET Generation, Transmission & Distribution, 15(20), 2905-2914. https://doi.org/10.1049/gtd2.12227

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-4283-2023

Download Full Article PDF

Share this article

Related Articles