PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 31 (4) Jul. 2023 / JST-3892-2022

 

Adaptive Density Control Based on Random Sensing Range for Energy Efficiency in IoT Sensor Networks

Fuad Bajaber

Pertanika Journal of Science & Technology, Volume 31, Issue 4, July 2023

DOI: https://doi.org/10.47836/pjst.31.4.14

Keywords: Density control, energy efficiency, IoT, sensing range, wireless sensor network

Published on: 3 July 2023

IoT sensor networks enable long-term environmental monitoring. Most environmental applications require sensor node data gathering to satisfy application objectives. Therefore, sensing range optimization is a significant element in prolonging the lifetime of IoT sensor networks and saving energy. This study proposes an adaptive density control based on random sensing range (ADCR). It can reduce data redundancy by selecting several active and hybrid nodes in a sensing field. Thus, reducing redundancy power consumption will maximize the network lifetime. The simulation results demonstrate the effectiveness of density control based on the random sensing range.

  • Al-Shalabi, M., Anbar, M., Wan, T.C., & Khasawneh, A. (2018). Variants of the low-energy adaptive clustering hierarchy protocol: Survey, issues and challenges. Electronics, 7(8), Article 136. https://doi.org/10.3390/electronics7080136

  • Bar-Noy, A., & Baumer, B. (2015). Average case network lifetime on an interval with adjustable sensing ranges. Algorithmica, 72(1), 148-166. https://doi.org/10.1007/s00453-013-9853-5

  • Cerulli, R., De Donato, R., & Raiconi, A. (2012). Exact and heuristic methods to maximize network lifetime in wireless sensor networks with adjustable sensing ranges. European Journal of Operational Research, 220(1), 58-66. https://doi.org/10.1016/j.ejor.2012.01.046

  • Cheng, S., Cai, Z., & Li, J. (2017). Approximate sensory data collection: A survey. Sensors, 17(3), Article 564. https://doi.org/10.3390/s17030564

  • Debnath, S., Hossain, A., Chowdhury, S. M., & Singh, A. K. (2018). Effective sensing radius (ESR) and performance analysis of static and mobile sensor networks. Telecommunication Systems, 68(1), 115-127. https://doi.org/10.1007/s11235-017-0379-z

  • Dhawan, A., Vu, C. T., Zelikovsky, A., Li, Y., & Prasad, S. K. (2006). Maximum lifetime of sensor networks with adjustable sensing range. In Seventh ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD’06) (pp. 285-289). IEEE Publishing. https://doi.org/10.1109/snpd-sawn.2006.46

  • Dolas, P., & Ghosh, D. (2018). Compressed Sensing Based Network Lifetime Enhancement in Wireless Sensor Networks. In V. Janyani, M. Tiwari, G. Singh & P. Minzioni (Eds.), Optical and Wireless Technologies (pp. 465-471). Springer. https://doi.org/10.1007/978-981-10-7395-3_52

  • Dong, Z., Shang, C., Chang, C. Y., & Roy, D. S. (2020). Barrier coverage mechanism using adaptive sensing range for renewable WSNs. IEEE Access, 8, 86065-86080. https://doi.org/10.1109/access.2020.2992867

  • Hao, J., Zhang, B., Jiao, Z., & Mao, S. (2015). Adaptive compressive sensing based sample scheduling mechanism for wireless sensor networks. Pervasive and Mobile Computing, 22, 113-125. https://doi.org/10.1016/j.pmcj.2015.02.002

  • Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660-670. https://doi.org/10.1109/twc.2002.804190

  • Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd Annual Hawaii International Conference on System Sciences (pp. 1-10). IEEE Publishing. https://doi.org/10.1109/hicss.2000.926982

  • Liu, S., Gao, S., Bao, T., & Zhang, Y. (2017). A hybrid approach to maximize the lifetime of directional sensor networks with smoothly varying sensing ranges. Chinese Journal of Electronics, 26(4), 703-709. https://doi.org/10.1049/cje.2017.06.001

  • Liu, X. (2016). A novel transmission range adjustment strategy for energy hole avoiding in wireless sensor networks. Journal of Network and Computer Applications, 67, 43-52. https://doi.org/10.1016/j.jnca.2016.02.018

  • Nayak, A. K., Misra, B. B., & Rai, S. C. (2011). Energy efficient adaptive sensing range for sensor network. In 2011 International Conference on Energy, Automation and Signal (pp. 1-6). IEEE Publishing. https://doi.org/10.1109/iceas.2011.6147143

  • Nkomo, M., Hancke, G. P., Abu-Mahfouz, A. M., Sinha, S., & Onumanyi, A. J. (2018). Overlay virtualized wireless sensor networks for application in industrial internet of things: A review. Sensors, 18(10), Article 3215. https://doi.org/10.3390/s18103215

  • Puneeth, D., & Kulkarni, M. (2020). Data aggregation using compressive sensing for energy efficient routing strategy. Procedia Computer Science, 171, 2242-2251. https://doi.org/10.1016/j.procs.2020.04.242

  • Raza, U., Bogliolo, A., Freschi, V., Lattanzi, E., & Murphy, A. L. (2016). A two-prong approach to energy-efficient WSNs: Wake-up receivers plus dedicated, model-based sensing. Ad Hoc Networks, 45, 1-12. https://doi.org/10.1016/j.adhoc.2016.03.005

  • Rossi, A., Singh, A., & Sevaux, M. (2012). An exact approach for maximizing the lifetime of sensor networks with adjustable sensing ranges. Computers & Operations Research, 39(12), 3166-3176. https://doi.org/10.1016/j.cor.2012.04.001

  • Seah, W. K., Eu, Z. A., & Tan, H. P. (2009). Wireless sensor networks powered by ambient energy harvesting (WSN-HEAP)-Survey and challenges. In 2009 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology (pp. 1-5). IEEE Publishing. https://doi.org/10.1109/wirelessvitae.2009.5172411

  • Singh, N., Kumar, S., Kanaujia, B. K., Choi, H. C., & Kim, K. W. (2019). Energy-efficient system design for internet of things (IoT) devices. In M. Mittal, S. Tanwar, B. Agarwal, & L. M. Goyal, (Eds.), Energy Conservation for IoT Devices (pp. 49-74). Springer. https://doi.org/10.1007/978-981-13-7399-2_3

  • Walker, C., Sivakumar, S., & Al-Anbuky, A. (2015). Data flow and management for an IoT based WSN. In 2015 IEEE International Conference on Data Science and Data Intensive Systems (pp. 624-631). IEEE Publishing. https://doi.org/10.1109/dsdis.2015.29

  • Wannachai, A., & Champrasert, P. (2015). Adaptive transmission range based on event detection for WSNs. In 2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP) (pp. 1-6). IEEE Publishing. https://doi.org/10.1109/issnip.2015.7106944

  • Yang, O., & Heinzelman, W. (2009). A better choice for sensor sleeping. In European Conference on Wireless Sensor Networks (pp. 134-149). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-00224-3_9

  • Zhang, H., Li, L., Yan, X. F., & Li, X. (2011). A load-balancing clustering algorithm of WSN for data gathering. In 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC) (pp. 915-918). IEEE Publishing. https://doi.org/10.1109/aimsec.2011.6010559

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-3892-2022

Download Full Article PDF

Share this article

Related Articles