e-ISSN 2231-8526
ISSN 0128-7680
Shafiqah Amir, Haylay Tsegab, Grisel Jimenez Soto and Ali Imran Azman
Pertanika Journal of Science & Technology, Volume 30, Issue 3, July 2022
DOI: https://doi.org/10.47836/pjst.30.3.28
Keywords: Facies map, Holocene carbonate, Landsat imagery, remote sensing, supervised classification
Published on: 25 May 2022
The analog study is common in understanding buried reservoirs and the relationship between architectural complexity and heterogeneity of carbonate deposits. This study processed satellite and false-color images using single-band images and classified them using a supervised classification technique to generate an environmental facies map. Thus, the study’s objectives are to map facies distribution in selected carbonate depositional environment and investigate oceanographic parameters that influence the development and evolution of modern carbonates in Holocene Kepulauan Seribu patch reef complexes, Java Basin. The main sub-environments are reef sand apron, subtidal reefal margin, and shallower subtidal lagoon. Annual wind patterns in the Java Basin have influenced the development of carbonate sediment in the Kepulauan Seribu archipelago, resulting in the formation of an isolated carbonate platform pattern with a single crest and asymmetrical dipping flanks. Meanwhile, the salinity of seawater influences the production of modern carbonate deposits as the Java basin is situated at the equator line, where the salinity of the seawater is moderately salty (35‰) and contributes to the favorable conditions for carbonate growth. The analysis of oceanographic elements with the integration of quantified environmental facies distribution is conducted to monitor the deposition of carbonate sediments which gives insight into carbonate distribution on the studied platforms. Satellite-derived facies maps provide an accurate overview of depositional facies patterns at the field scale in the oil and gas industry, enabling geologists to assess the potential of an oil and gas reservoir.
Ahr, W. M. (2011). Geology of carbonate reservoirs: The identification, description and characterization of hydrocarbon reservoirs in carbonate rocks. John Wiley & Sons.
Ali, M. Y., & Abolins, P. (1999). Central luconia province. The Petroleum Geology and Resources of Malaysia, 1, 369-392.
Andrefouet, S., & Riegl, B. (2004). Remote sensing: A key tool for interdisciplinary assessment of coral reef processes. Coral Reefs, 23(1), 1-4. https://doi.org/10.1007/s00338-003-0360-z
Chalabi, A., Pierson, B., & Ab Talib, J. (2012). Remote Sensing analysis of recent carbonate platforms, east of Sabah: Potential analogues for Miocene carbonate platforms of the South China Sea. Indonesian Journal on Geoscience, 7(3), 123-135.
Cleary, D. F., & Hoeksema, B. W. (2006). Coral diversity across a disturbance gradient in the Pulau Seribu reef complex off Jakarta, Indonesia. In D. L. Hawksworth & A. T. Bull (Eds.), Marine, Freshwater, and Wetlands Biodiversity Conservation (pp. 285-306). Springer. https://doi.org/10.1007/978-1-4020-5734-2_19
De Voogd, N. J., & Cleary, D. F. (2008). An analysis of sponge diversity and distribution at three taxonomic levels in the Thousand Islands/Jakarta Bay reef complex, West-Java, Indonesia. Marine Ecology, 29(2), 205-215. https://doi.org/10.1111/j.1439-0485.2008.00238.x
Hamilton, W. B. (1979). Tectonics of the Indonesian region. USGS Publication.
Harris, P. M. (1996). Reef styles of modern carbonate platforms. Bulletin of Canadian Petroleum Geology, 44(1), 72-81. https://doi.org/10.35767/gscpgbull.44.1.072
Harris, P. M. (2010). Delineating and quantifying depositional facies patterns in carbonate reservoirs: Insight from modern analogs. AAPG Bulletin, 94(1), 61-86. https://doi.org/10.1306/07060909014
Harris, P. M. M., & Vlaswinkel, B. (2008). Modern isolated carbonate platforms: Templates for quantifying facies attributes of hydrocarbon reservoirs. In J. Lukasik & J. A. Simo (Eds.), Controls on Carbonate Platform and Reef Development (Vol. 89, pp. 323-341). SEPM Special Publication. https://doi.org/10.2110/pec.08.89.0323
Hoover, D. B., Klein, D. P., Campbell, D. C., & du Bray, E. (1995). Geophysical methods in exploration and mineral environmental investigations. Preliminary compilation of descriptive geoenvironmental mineral deposit models: USGS Open-File Report, 95(831), 19-27.
Jordan Jr, C. F. (1998). The sedimentology of Kepulauan Seribu: A modern patch reef complex in the west Java Sea, Indonesia. Indonesian Petroleum Association.
Kaczmarek, S. E., Hicks, M. K., Fullmer, S. M., Steffen, K. L., & Bachtel, S. L. (2010). Mapping facies distributions on modern carbonate platforms through integration of multispectral Landsat data, statistics-based unsupervised classifications, and surface sediment data. AAPG Bulletin, 94(10), 1581-1606. https://doi.org/10.1306/04061009175
Masek, J. G., Honzak, M., Goward, S. N., Liu, P., & Pak, E. (2001). Landsat-7 ETM+ as an observatory for land cover: Initial radiometric and geometric comparisons with Landsat-5 Thematic Mapper. Remote Sensing of Environment, 78(1-2), 118-130. https://doi.org/10.1016/S0034-4257(01)00254-1
Murai, S. (1993). Remote sensing notes. Japan Association of Remote Sensing.
Naseer, A. (2003). The integrated growth response of coral reefs to environmental forcing: Morphometric analysis of coral reefs of the Maldives (Doctoral dissertation). Dalhousie University, Canada.
Poerbandono. (2016). Wind characteristics and the associated risk of erosion in Seribu Islands patch reef complexes, Java Sea, Indonesia. In AIP Conference Proceedings (Vol. 1730, No. 1, p. 080001). AIP Publishing LLC. https://doi.org/10.1063/1.4947416
Prawirowardoyo, S. (1996). Meteorologi. Penerbit ITB.
Prior, S. W. (1986). Bima Field, Indonesia, a sleeping giant. Circum Pacific Council Publications.
Purkis, S. J. (2005). A reef-up approach to classifying coral habitats from IKONOS imagery. IEEE Transactions on Geoscience and Remote Sensing, 43(6), 1375-1390. https://doi.org/10.1109/TGRS.2005.845646
Purkis, S. J., Kohler, K. E., Riegl, B. M., & Rohmann, S. O. (2007). The statistics of natural shapes in modern coral reef landscapes. The Journal of Geology, 115(5), 493-508.
Rankey, E. C. (2016). On facies belts and facies mosaics: Holocene isolated platforms, South China Sea. Sedimentology, 63(7), 2190-2216. https://doi.org/10.1111/sed.12302
Riegl, B. M., Halfar, J., Purkis, S. J., & Godinez-Orta, L. (2007). Sedimentary facies of the eastern Pacific’s northernmost reef-like setting (Cabo Pulmo, Mexico). Marine Geology, 236(1-2), 61-77. https://doi.org/10.1016/j.margeo.2006.09.021
Schlager, W., & Purkis, S. J. (2013). Bucket structure in carbonate accumulations of the Maldive, Chagos and Laccadive archipelagos. International Journal of Earth Sciences, 102(8), 2225-2238. https://doi.org/10.1007/s00531-013-0913-5
Tjasyono, H. K. B., Gernowo, R., Sri Woro, B. H., & Ina, J. (2008, September 16-18). The character of rainfall in the Indonesian monsoon. In The International Symposium on Equatorial Monsoon System (pp. 1-11). Yogyakarta, Indonesia.
Utami, D. A., Reuning, L., & Cahyarini, S. Y. (2018). Satellite‐and field‐based facies mapping of isolated carbonate platforms from the Kepulauan Seribu Complex, Indonesia. The Depositional Record, 4(2), 255-273. https://doi.org/10.1002/dep2.47
Vincent, R. K. (1997). Fundamentals of geological and environmental remote sensing. Prentice Hall.
Williams, T. M., Rees, J. G., & Setiapermana, D. (2000). Metals and trace organic compounds in sediments and waters of Jakarta Bay and the Pulau Seribu Complex, Indonesia. Marine Pollution Bulletin, 40(3), 277-285.
Wilson, J. L. (1997). Carbonate depositional environments and diagenesis. In I. Palaz & K. J. Marfurt (Eds.), Carbonate Seismology (pp. 9-28). Society of Exploration Geophysicists.
Yu, S. L., Westfechtel, T., Hamada, R., Ohno, K., & Tadokoro, S. (2017). Vehicle detection and localization on bird’s eye view elevation images using convolutional neural network. In 2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR) (pp. 102-109). IEEE Publishing. https://doi.org/10.1109/SSRR.2017.8088147
ISSN 0128-7680
e-ISSN 2231-8526