e-ISSN 2231-8526
ISSN 0128-7680
Nurul Izza Ismail
Pertanika Journal of Science & Technology, Volume 30, Issue 2, April 2022
DOI: https://doi.org/10.47836/pjst.30.2.36
Keywords: FCϵRIγ pathway, mathematical model, modular, parameter optimisation, reproducible
Published on: 1 April 2022
Syk is a tyrosine kinase important to bridge the receptor ligation and downstream signallings such as Ca2+ and PI3K. Once the cell receptor binds with the ligand, FCϵRIγ (ITAM receptor) is recruited and phosphorylated by Lyn. The phosphorylated ITAM then recruits protein tyrosine kinase (Syk). The previously developed FCϵRIγ (FCϵ) model contained a greater level of complexity. This study aims to build a simple model of signalling of FCϵ that still represents biological understanding. The parameter estimation is addressed using least-squares optimisation, which implements the Levenburg-Marquardt gradient method (greedy algorithm) to minimise an objective function. More importantly, this model was fitted to two data sets that captured a temporal FCϵ, Syk and Grb2 phosphorylation. Model uncertainty often has done as an analysis that is carried out after model construction and calibration have been completed. This study assessed for sensitivity to parameter choices and model uncertainty to perform the analysis. The modular design principles are applied to the construction of the model. The model is designed to be reproducible. In other words, the model can be effectively applied in simulation conditions or optimised to new datasets for new experimental situations.
Benhamou, M., Mkaddem, S. B., & Monteiro, R. C. (2019). Understanding Fc receptor involvement in inflammatory diseases: From mechanisms to new therapeutic tools. Frontiers in Immunology, 10, Article 811. https://doi.org/10.3389/fimmu.2019.00811
Blank, U., Huang, H., & Kawakami, T. (2021). The high affinity IgE receptor: A signaling update. Current Opinion in Immunology, 72, 51-58. https://doi.org/10.1016/j.coi.2021.03.015
Cooling, M. (2007). Modelling the inositol 1,4,5-trisphosphate / calcineurin signal transduction pathway in the cardiac myocyte (Doctoral dissertation). University of Auckland, New Zealand.
Cooling, M. T., Hunter, P., &, Crampin, E. J. (2008). Modelling biological modularity with CeIIML. IET Systems Biology, 2(2), 73-79. https://doi.org/10.1049/iet-syb:20070020
Cooling, M. T., Nickerson, D. P., Nielsen, P. M., & Hunter, P. J. (2016). Modular modelling with physiome standards. The Journal of Physiology, 594(23), 6817-6831. https://doi.org/10.1113/JP272633
Faeder, J. R., Hlavacek, W. S., Reischl, I., Blinov, M. L., Metzger, H., Redondo, A., Wofsy, C., & Goldstein, B. (2003). Investigation of early events in FcεRI-mediated signaling using a detailed mathematical model. The Journal of Immunology, 170(7), 3769-3781. https://doi.org/10.4049/jimmunol.170.7.3769
Gregorio, G. (2019). Current strategies to inhibit high affinity FcεRI-mediated signaling for the treatment of allergic disease. Frontiers in Immunology, 10, Article 175. https://doi.org/10.3389/fimmu.2019.00175
Lantz, C., Yamaguchi, M., Oettgen, H., Katona, I., Kinet, J., & Galli, S. (1997). IgE regulates mouse basophil Fc epsilon RI expression in vivo. The Journal of Immunology, 158(6), 2517-2521.
Maurer, D., Fiebiger, S., Ebner, C., Reininger, B., Fischer, G. F., Wichlas, S., Jouvin, M. H., Schmitt-Egenolf, M., Kraft, D., Kinet, J. P., & Stingl, G. (1996). Peripheral blood dendritic cells express Fc epsilon RI as a complex composed of Fc epsilon RI alpha- and Fc epsilon RI gamma-chains and can use this receptor for IgE-mediated allergen presentation. The Journal of Immunology, 157(2), 607-606.
Moré, J. J. (1978). The levenberg-marquardt algorithm: Implementation and theory. In G. A. Watson (Ed.), Numerical analysis, (pp. 105-116). Springer. https://doi.org/10.1007/BFb0067700
Saltelli, A. (2002). Making best use of model evalu- ations to compute sensitivity indices. Computer Physics Communications, 145(2), 280-297. https://doi.org/10.1016/j.envsoft.2007.02.004
Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., & Tarantola, S. (2010). Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Computer Physics Communications, 181(2), 259-270. https://doi.org/10.1016/j.cpc.2009.09.018
Saltelli, A., Tarantola, S., Campolongo, F., & Ratto, M. (2004) Sensitivity analysis in practice: A guide to assessing scientific models. Wiley. https://doi.org/10.1111/j.1467-985X.2005.358_13.x
Sobol, I. M. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation, 55(1-3), 271-280. https://doi.org/10.1016/S0378-4754(00)00270-6
Tsang, E., Giannetti, A. M., Shaw, D., Dinh, M., Tse, J. K. Y., Gandhi, S., Ho, H., Wang, S., Papp, E., & Bradshaw, J. M. (2008). Molecular mechanism of the Syk activation switch. Journal of Biological Chemistry, 283(47), 32650-32659. https://doi.org/10.1074/jbc.M806340200
Wallace, S. W. (2000). Decision making under uncertainty: Is sensitivity analysis of any use? Operations Research, 48(1), 20-25. https://doi.org/10.1287/opre.48.1.20.12441
Waltemath, D., Adams, R., Bergmann, F. T., Hucka, M., Kolpakov, F., Miller, A. K., Moraru, I. I., Nickerson, D., Sahle, S., Snoep, J. L., & Le Novere, N. (2011). Reproducible computational biology experiments with SED-ML - The simulation experiment description markup language. BMC Systems Biology, 5(1), Article 198. https://doi.org/10.1186/1752-0509-5-198
Wofsy, C., Kent, U. M., Mao, S. Y., Metzger, H., & Goldstein, B. (1995). Kinetics of tyrosine phosphorylation when IgE dimers bind to FC epsilon receptors on rat basophilic leukemia cells. Journal of Biological Chemistry, 270(35), 20264-20272. https://doi.org/10.1074/jbc.270.35.20264
ISSN 0128-7680
e-ISSN 2231-8526