PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Pre-Press / JST-4780-2023

 

Aluminium Hydroxide/Graphene-reinforced Rigid Polyurethane Foam Hybrid Composites

Aisha Elhadi Abosnina, Zurina Mohamad, Rohah Abdul Majid and Raji Muhammed Abdulwasiu

Pertanika Journal of Science & Technology, Pre-Press

DOI: https://doi.org/10.47836/pjst.32.5.10

Keywords: Aluminium hydroxides (ATH), fire behaviour, flammability, graphene, hybrid flame retardant, rigid polyurethane foam

Published: 2024-08-15

In this study, rigid polyurethane foams (RPUF) were successfully modified using 30 wt.% aluminium hydroxides (ATH), 1.0 pphp silicone surfactant, and different concentrations of graphene, using a one-shot one-step foaming method. This study aims to improve the compressive strength, flame retardancy, and thermal properties of RPUF by creating a synergistic effect between ATH and graphene in fire-retardant RPUF hybrid composites. The effects of a fixed amount of ATH and silicone surfactant and various loadings of graphene on RPUF were investigated. The results show that 0.5 wt.% graphene loading confers the best compression performance on the hybrid composite. Their compressive strength value of 12.58 KPa was higher than virgin RPUF (4.07 KPa) and RPUF/ATH (9.89 KPa). FTIR confirmed the functional groups in the virgin RPUF but could not identify new functional groups in most modified composites. The smallest amount of graphene addition (0.5 wt.%) produced a more stable hybrid composite structure. At 3.0 wt.% graphene addition, the maximum decomposition temperature of the RPUF/ATH hybrid composite was recorded (539oC), which was enhanced by 50% compared to virgin RPUF (296oC), and the highest char residue of 17.46% was observed. The incorporation of graphene enhanced the thermal firmness of the hybrid composite. The study also revealed an enhancement in the fire resistance of the hybrid composite. The LOI and UL-94 results showed that incorporating 3.0 wt.% enables increased LOI value and V-0 classification compared to virgin samples. This hybrid composite can be used in high-performance building insulation applications.

  • Alis, A., Majid, R. A., & Mohamad, Z. (2019). Morphologies and thermal properties of palm-oil based rigid polyurethane/halloysite nanocomposite foams. Journal-Chemical Engineering Transactions, 72, 415–420. http:// doi.org/10.3303/CET1972070

  • American Society for Testing and Materials (2001). Standard test method for compressive properties of rigid cellular plastics (ASTM D1621-1). ASTM International.

  • American Society for Testing and Materials (1997). Standard test Method for measuring the minimum oxygen concentration to support candle-like combustion of plastics (oxygen index) (ASTM D2863-97). ASTM International.

  • American Society for Testing and Materials (2010). Standard test method for measuring the comparative burning characteristics of solid plastics in a vertical position (ASTM D3801-10). ASTM International.

  • Baferani, A. H., Keshavarz, R., Asadi, M., & Ohadi, A. R. (2018). Effects of silicone surfactant on the properties of open-cell flexible polyurethane foams. Advances in Polymer Technology, 37(1), 71–83. https://doi.org/10.1002/adv.21643

  • Baguian, A. F., Ouiminga, S. K., Longuet, C., Caro-Bretelle, A. S., Corn, S., Bere, A., & Sonnier, R. (2021). Influence of density on foam collapse under burning. Polymers, 23(1), Article 13. https://dx.doi.org/10.3390/polym 13010013

  • Battig, A., Fadul, N. A. R., Frasca, D., Schulze, D,. & Schartel, B. (2021). Multifunctional graphene nanofiller in flame retarded polybutadiene/chloroprene/carbon black composites. e-Polymers, 21(1), 244–262. https://doi.org/10.1515/epoly-2021-0026

  • Bera, M., & Maji, P. K. (2017). Effect of structural disparity of graphene-based materials on thermo- mechanical and surface properties of thermoplastic polyurethane nanocomposites. Polymer, 119, 118–133. https://doi.org/10.1016/j.polymer.2017.05.019

  • Chattopadhyay, D. K., & Webster, D. C. (2009). Thermal stability and flame retardancy of polyurethanes. Progress in Polymer Science, 34(10), 1068–1133. https://doi.org/10.1016/j.progpolymsci.2009.06.002

  • Chen, M. J., Xu, Y. J., Rao, W. H., Huang, J. Q., Wang, X. L., Chen, L., & Wang, Y. Z. (2014). Influence of valence and structure of phosphorus-containing melamine salts on the decomposition and fire behaviours of flexible polyurethane foams. Industrial and Engineering Chemistry Research, 53(21), 8773–8783. https://doi.org/10.1021/ie500691p

  • Chen, X. Y., Huang, Z. H., Xi, X. Q., Li, J., Fan, X. Y. & Wang, Z. (2018). Synergistic effect of carbon and phosphorus flame retardants in rigid polyurethane foams. Fire and Materials, 42(4), 447–453. https://doi.org/10.1002/fam.2511

  • Chen, X. Y., Romero, A., Paton-Carrero, A., Lavin-Lopez, M. P., Sanchez-Silva, L., Valverde, J. L., Kaliaguine, S., & Rodrigue, D. (2019). Functionalized graphene–reinforced foams based on polymer matrices. In M. Jawaid, R. Bouhfid & A. K. Qaiss (Eds.), Functionalized Graphene Nanocomposites and their Derivatives (pp. 121-155). Elsevier. https://doi.org/10.1016/B978-0-12-814548-7.00007-6

  • Chen, X., Li, J., & Gao, M. (2019). Thermal degradation and flame retardant mechanism of the rigid polyurethane foam including functionalized graphene oxide. Polymers, 11(1), Article 78. https://www.mdpi.com/2073-4360/11/1/78

  • Cheng, J. J., Shi, B. B., Zhou, F. B., & Chen, X. Y. (2014). Effects of inorganic fillers on the flame-retardant and mechanical properties of rigid polyurethane foams. Journal of Applied Polymer Science, 131(10), Article 40253. https://doi.org/10.1002/app.40253

  • Członka, S., Kairytė, A., Miedzińska, K., Strakowska, A., & Adamus-Włodarczyk, A. (2021). Mechanically strong polyurethane composites reinforced with montmorillonite-modified sage filler (Salvia officinalis L.). International Journal of Molecular Sciences, 22(7), Article 3744. https://doi.org/10.3390/ijms22073744

  • Dhaliwal, G. S., Anandan, S., Bose, M., Chandrashekhara, K., & Nam, P. (2020). Effects of surfactants on mechanical and thermal properties of soy-based polyurethane foams. Journal of Cellular Plastics. 56(6), 611–629. https://doi.org/10.1177/0021955X20912200

  • Dittrich, B., Wartig, K. A., Hofmann, D., Mülhaupt, R., & Schartel, B. (2013). Flame retardancy through carbon nanomaterials: Carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene. Polymer Degradation and Stability, 98(8), 1495–1505. https://doi.org/10.1016/j.polymdegradstab.2013.04.009

  • Eaves, D. (2004). Handbook of polymer foams. Rapra Technology Ltd.

  • Eling, B., Tomović, Ž., & Schädler, V. (2020). Current and future trends in polyurethanes: An industrial perspective. Macromolecular Chemistry and Physics, 221(14), Article 2000114. https://doi.org/10.1002/macp.202000114

  • Feng, C., Liang, M., Zhang, Y., Jiang, J., Huang, J., & Liu, H. (2016). Journal of analytical and applied pyrolysis synergistic effect of lanthanum oxide on the flame retardant properties and mechanism of an intumescent flame retardant PLA composites. Journal of Analytical and Applied Pyrolysis, 122, 241–248. https://doi.org/10.1016/j.jaap.2016.09.018

  • Fenimore, C. P. (1975). Candle-type test for flammability of polymers. In M. Lewin, S. M. Atlas & E. M. Pearce (Eds.), Flame-Retardant Polymeric Materials (pp. 259-267). Springer. https://doi.org/10.1007/978-1-4684-2148-4_9

  • Gedam, S. S., Chaudhary, A. K., Vijayakumar, R. P., Goswami, A. K., Bajad, G. S., & Pal, D. (2019). Thermal, mechanical and morphological study of carbon nanotubes-graphene oxide and silver nanoparticles based polyurethane composites. Materials Research Express, 6(8), Article 085308. https://doi.org/10.1088/2053-1591/ab1db4

  • Han, Y., Wu, Y., Shen, M., Huang, X., Zhu, J., & Zhang, X. (2013). Preparation and properties of polystyrene nanocomposites with graphite oxide and graphene as flame retardants. Journal of Materials Science, 48(12), 4214–4222. https://doi.org/10.1007/s10853-013-7234-8

  • Han, Z., Wang, Y., Dong, W., & Wang, P. (2014). Enhanced fire retardancy of polyethylene/alumina trihydrate composites by graphene nanoplatelets. Materials Letters, 128, 275–278. https://doi.org/10.1016/j.matlet.2014.04.148

  • Hodlur, R. M., & Rabinal, M. K. (2014). Self assembled graphene layers on polyurethane foam as a highly pressure sensitive conducting composite. Composites Science and Technology, 90, 160–165. https://doi.org/10.1016/j.compscitech.2013.11.005

  • Huang, G., Chen, S., Song, P., Lu, P., Wu, C., & Liang, H. (2014). Combination effects of graphene and layered double hydroxides on intumescent flame-retardant poly (methyl methacrylate) nanocomposites. Applied Clay Science, 88–89, 78–85. https://doi.org/10.1016/j.clay.2013.11.002

  • Huang, S., Deng, C., Zhao, Z., Chen, H., Gao, Y., & Wang, Y. (2020). Phosphorus-containing organic-inorganic hybrid nanoparticles for the smoke suppression and flame retardancy of thermoplastic polyurethane. Polymer Degradation and Stability, 178, Article 109179. https://doi.org/10.1016/j.polymdegradstab.2020.109179

  • Hull, T. R., Witkowski, A., & Hollingbery, L. (2011). Fire retardant action of mineral fillers. Polymer Degradation and Stability, 96(8), 1462–1469. https://doi.org/10.1016/j.polymdegradstab.2011.05.006

  • Jęsiak, T., Hasiak, M., Łaszcz, A., Chęcmanowski, J., Gerasymchuk, Y., Stachowiak, P., Strek, W., & Hreniak, D. (2023). Thermo-smart composite materials: Exploring the potential of graphene-doped porous silica foams. Construction and Building Materials, 394, Article 132249. https://doi.org/10.1016/j.conbuildmat.2023.132249

  • Jonjaroen, V., Ummartyotin, S., & Chittapun, S. (2020). Algal cellulose as a reinforcement in rigid polyurethane foam. Algal Research, 51, Article 102057. https://doi.org/10.1016/j.algal.2020.102057

  • Ju, Z., He, Q., Zhang, H., Zhan, T., Chen, L., Li, S., Hong, L., & Lu, X. (2020). Steam explosion of windmill palm fibre as the filler to improve the acoustic property of rigid polyurethane foams. Polymer Composites, 41(7), 2893–2906. https://doi.org/10.1002/pc.25585

  • Kairytė, A., Kremensas, A., Balčiūnas, G., Członka, S., & Strąkowska, A. (2020). Closed cell rigid polyurethane foams based on low functionality polyols: Research of dimensional stability and standardised performance properties. Materials, 13(6), Article 1438. https://doi.org/10.3390/ma13061438

  • Kavšek, M., Figar, N., Mihelič, I., & Krajnc, M. (2022). Melamine-formaldehyde rigid foams – Manufacturing and their thermal insulation properties. Journal of Cellular Plastics, 58(1), 175–193. https://doi.org/10.1177/0021955X21997348

  • Kerche, E. F., Delucis, R. D. A., Petzhold, C. L., & Amico, S. C. (2020). Rigid bio-based wood/polyurethane foam composites expanded under confinement. Journal of Cellular Plastics, 57(5), 757-768. https://doi.org/10.1177/0021955X20964018

  • Kim, J. M., Kim, D. H., Kim, J., Lee, J. W., & Kim, W. N. (2017). Effect of graphene on the sound damping properties of flexible polyurethane foams. Macromolecular Research, 25(2), 190–196. https://doi.org/10.1007/s13233-017-5017-9

  • Kumar, M., & Kaur, R. (2017). Glass fibre reinforced rigid polyurethane foam: Synthesis and characterisation. E-Polymers, 17(6), 517–521. https://doi.org/10.1515/epoly-2017-0072

  • Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887), 385–388. https://doi.org/10.1126/science.1157996

  • Lee, S. H., Lee, S. G., Lee, J. S., & Ma, B. C. (2022). Understanding the flame retardant mechanism of intumescent flame retardant on improving the fire safety of rigid polyurethane foam. Polymers, 14(22), Article 4904. https://doi.org/10.3390/polym14224904

  • Liu, D., & Hu, A. (2020). The influence of environmentally friendly flame retardants on the thermal stability of phase change polyurethane foams. Materials, 13(3), Article 520. https://doi.org/10.3390/ma13030520

  • Liu, D., Zou, L., Chang, Q., & Xiao, T. (2021). Preparation and properties of rigid polyurethane foams added with graphene oxide-hollow glass microspheres hybrid. Designed Monomers and Polymers, 24(1), 210–217. https://doi.org/10.1080/15685551.2021.1954340

  • Liu, H., Dong, M., Huang, W., Gao, J., Dai, K., Guo, J., Zheng, G., Liu, C., Shen, C., & Guo, Z. (2017). Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. Journal of Materials Chemistry C, 5(1), 73–83. https://doi.org/10.1039/C6TC03713E

  • Liu, X., Hao, J., & Gaan, S. (2016). Recent studies on the decomposition and strategies of smoke and toxicity suppression for polyurethane-based materials. RSC Advances, 6(78), 74742–74756. 10.1039/C6RA14345H

  • Lorusso, C., Vergaro, V., Conciauro, F., Ciccarella, G., & Congedo, P. M. (2017). Thermal and mechanical performance of rigid polyurethane foam added with commercial nanoparticles. Nanomaterials and Nanotechnology, 7(1–19), Article 184798041668411. https://doi.org/10.1177/1847980416684117

  • Mishra, V. K., & Patel, R. H. (2020). Synthesis and characterization of flame retardant polyurethane: Effect of castor oil polyurethane on its properties. Polymer Degradation and Stability, 175, Article 109132. https://doi.org/10.1016/j.polymdegradstab.2020.109132

  • Modesti, M., Lorenzetti, A., Simioni, F., & Camino, G. (2002). Expandable graphite as an intumescent flame retardant in polyisocyanurate-polyurethane foams. Polymer Degradation and Stability, 77(2), 195–202. https://doi.org/10.1016/S0141-3910(02)00034-4

  • Mohamad, Z., Raji, A. M., Hassan, A., & Khan, Z. I. (2021). Novel intumescent flame retardant of ammonium polyphosphate/sepiolite/melamine on rigid polyurethane foam: Morphologies, and flammability properties. Chemical Engineering Transactions, 89, 619–624. https://doi.org/10.3303/CET2189104

  • Osman, A., Elhakeem, A., Kaytbay, S., & Ahmed, A. (2021). Thermal , electrical and mechanical properties of graphene / nano-alumina / epoxy composites. Materials Chemistry and Physics, 257, Article 123809. https://doi.org/10.1016/j.matchemphys.2020.123809

  • Pang, H., Wu, Y., Wang, X., Hu, B., & Wang, X. (2019). Recent advances in composites of graphene and layered double hydroxides for water remediation: A review. Chemistry – An Asian Journal, 14(15), 2542–2552. https://doi.org/10.1002/asia.201900493

  • Peng, H., Wang, X., Li, T., Lou, C., Wang, Y., & Lin, J. (2019). Mechanical properties, thermal stability, sound absorption, and flame retardancy of rigid PU foam composites containing a fire‐retarding agent: Effect of magnesium hydroxide and aluminium hydroxide. Polymers for Advanced Technologies, 30(8), 2045–2055. https://doi.org/10.1002/pat.4637

  • Pinto, S. C., Marques, P. A. A. P., Vicente, R., Godinho, L., & Duarte, I. (2020). Hybrid structures made of polyurethane/graphene nanocomposite foams embedded within aluminum open-cell foam. Metals, 10(6), Article 768. https://doi.org/10.3390/met10060768

  • Pokharel, P., Choi, S., & Lee, D. S. (2015). The effect of hard segment length on the thermal and mechanical properties of polyurethane/graphene oxide nanocomposites. Composites Part A, 69, 168–177. https://doi.org/10.1016/j.compositesa.2014.11.010

  • Rocha, J. D. S., Escócio, V. A., Visconte, L. L. Y., & Pacheco, É. B. A. V. (2021). Thermal and flammability properties of polyethylene composites with fibers to replace natural wood. Journal of Reinforced Plastics and Composites, 40(19–20), 726-740. https://doi.org/10.1177/07316844211002895

  • Sałasińska, K., Leszczyńska, M., Celiński, M., Kozikowski, P., Kowiorski, K., & Lipińska, L. (2021). Burning behaviour of rigid polyurethane foams with histidine and modified graphene oxide. Materials, 14(5), Article 1184. https://doi.org/10.3390/ma14051184

  • Shivakumar, H., Renukappa, N. M., Shivakumar, K. N., & Suresha, B. (2020). The reinforcing effect of graphene on the mechanical properties of carbon-epoxy composites. Open Journal of Composite Materials, 10(02), 27–44. https://doi.org/ 10.4236/ojcm.2020.102003.

  • Shoaib, S., Shahzad Maqsood, K., Nafisa, G., Waqas, A., Muhammad, S., & Tahir, J. (2014). A comprehensive short review on polyurethane foam. International Journal of Innovation and Applied Studies, 12(1), 165–169.

  • Silva, E. H. P., Aguiar, J. C. F., Waldow, G., Costa, R. R. C., Tita, V., & Ribeiro, M. L. (2022). Compression and morphological properties of a bio-based polyurethane foam with aluminum hydroxide. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 236(7), 1408-1418. https://doi.org/10.1177/14644207211059077

  • Sinh, L. H., Luong, N. D., & Seppälä, J. (2019). Enhanced mechanical and thermal properties of polyurethane/functionalised graphene oxide composites by in situ polymerisation. Plastics, Rubber and Composites, 48(10), 466–476. https://doi.org/10.1080/14658011.2019.1664820.

  • Srihanum, A., Noor, M. T. T., Devi, K. P. P., Hoong, S. S., Ain, N. H., Mohd, N. S., Din, N. S. M. N. M., & Kian, Y. S. (2022). Low-density rigid polyurethane foam incorporated with renewable polyol as sustainable thermal insulation material. Journal of Cellular Plastics, 58(3), 485-503.. https://doi.org/10.1177/0021955X211062630

  • Stoller, M. D., Park, S., Yanwu, Z., An, J., & Ruoff, R. S. (2008). Graphene-based ultracapacitors. Nano Letters, 8(10), 3498–3502. https://doi.org/10.1021/nl802558y

  • Thirumal, M., Singha, N. K., Khastgir, D., Manjunath, B. S., & Naik, Y. P. (2010). Halogen-free flame-retardant rigid polyurethane foams: Effect of alumina trihydrate and triphenylphosphate on the properties of polyurethane foams. Journal of Applied Polymer Science, 116(4), 2260–2268. https://doi.org/10.1002/app.31626

  • Thiyagu, C., Manjubala, I., & Narendrakumar, U. (2021). Thermal and morphological study of graphene-based polyurethane composites. Materials Today: Proceedings, 45, 3982–3985. https://doi.org/10.1016/j.matpr.2020.08.641

  • Titow, W. V. (2001). PVC Technology, 146. Rapra Technology Ltd.

  • Tiuc, A. E., Borlea, S. I., Nemeș, O., Vermeșan, H., Vasile, O., Popa, F., & Pințoi, R. (2022). New composite materials made from rigid/flexible polyurethane foams with fir sawdust: Acoustic and thermal behavior. Polymers, 14(17), Article 3643. https://doi.org/10.3390/polym14173643

  • Wang, S., Du, X., Jiang, Y., Xu, J., Zhou, M., Wang, H., Cheng, X., & Du, Z. (2019). Synergetic enhancement of mechanical and fire-resistance performance of waterborne polyurethane by introducing two kinds of phosphorus–nitrogen flame retardant. Journal of colloid and interface science, 537, 197-205.‏ https://doi.org/10.1016/j.jcis.2018.11.003

  • Wang, Y., Wang, F., Dong, Q., Xie, M., Liu, P., Ding, Y., Zhang, S., Yang, M. & Zheng, G. (2017). Core-shell expandable graphite @ aluminum hydroxide as a flame-retardant for rigid polyurethane foams. Polymer Degradation and Stability, 146, 267–276. https://doi.org/10.1016/j.polymdegradstab.2017.10.017

  • Wang, Y., Wang, F., Dong, Q., Yuan, W., Liu, P., Ding, Y., Zhang, S., Yang, M., & Zheng, G. (2018). Expandable graphite encapsulated by magnesium hydroxide nanosheets as an intumescent flame retardant for rigid polyurethane foams. Journal of Applied Polymer Science, 135(39), Article 46749. https://doi.org/10.1002/app.46749

  • Wang, Z. Y., Liu, Y., & Wang, Q. (2010). Flame retardant polyoxymethylene with aluminium hydroxide/melamine/novolac resin synergistic system. Polymer Degradation and Stability, 95(6), 945–954. https://doi.org/10.1016/j.polymdegradstab.2010.03.028

  • Wrześniewska-Tosik, K., Ryszkowska, J., Mik, T., Wesołowska, E., Kowalewski, T., Pałczyńska, M., Sałasińska, K., Walisiak, D., & Czajka, A. (2020). Composites of semi-rigid polyurethane foams with keratin fibers derived from poultry feathers and flame retardant additives. Polymers, 12(12), Article 2943. https://doi.org/10.3390/polym12122943

  • Yao, Y., Jin, S., Ma, X., Yu, R., Zou, H., Wang, H., Lv, X., & Shu, Q. (2020). Graphene-containing flexible polyurethane porous composites with improved electromagnetic shielding and flame retardancy. Composites Science and Technology, 200, Article 108457. https://doi.org/10.1016/j.compscitech.2020.108457

  • Yuan, B., Sun, Y., Chen, X., Shi, Y., Dai, H., & He, S. (2018). Poorly-/well-dispersed graphene: Abnormal influence on flammability and fire behaviour of intumescent flame retardant. Composites Part A: Applied Science and Manufacturing, 109, 345–354. https://doi.org/10.1016/j.compositesa.2018.03.022

  • Zhang, W., Zhao, Z., & Lei, Y. (2021). Flame retardant and smoke-suppressant rigid polyurethane foam based on sodium alginate and aluminium diethyl phosphite. Designed Monomers and Polymers, 24(1), 46–52. https://doi.org/10.1080/15685551.2021.1879451.

  • Zhang, X., Sun, S., Yuan, D., Wang, Z., Xie, H., & Liu, Y. (2023). Fabrication of hydrolyzed keratin-modified rigid polyurethane foams and their thermal stability and combustion performance. International Journal of Polymer Analysis and Characterization, 28(7), 662-683. https://doi.org/10.1002/pi.6616.

  • Zhou, X., Jiang, F., Hu, Z., Wu, F., Gao, M., Chai, Z., Wang, Y., Gu, X., & Wang, Y. (2023). Study on the flame retardancy of rigid polyurethane foam with phytic acid-functionalized graphene oxide. Molecules, 28(17), Article 6267. https://doi.org/10.3390/molecules28176267

  • Zhu, H., Peng, Z., Chen, Y., Li, G., Wang, L., Tang, Y., Pang, R., Khan, Z. U. H., & Wan, P. (2014). Preparation and characterization of flame retardant polyurethane foams containing phosphorus-nitrogen-functionalized lignin. RSC Advances, 4(98), 55271–55279. https://doi.org/10.1039/C4RA08429B

  • Zhu, Q., Wang, Z., Zeng, H., Yang, T., & Wang, X. (2021). Effects of graphene on various properties and applications of silicone rubber and silicone resin. Composites Part A: Applied Science and Manufacturing, 142, Article 106240. https://doi.org/10.1016/j.compositesa.2020.106240

  • Zielonka, P., Duda, S., Lesiuk, G., Błażejewski, W., Wiśniewska, M., Warycha, J., Stabla, P., Smolnicki, M., & Babiarczuk, B. (2022). The effect of flame retardant—Aluminum trihydroxide on mixed mode I/II fracture toughness of epoxy resin. Polymers, 14(20), Article 4386. https://doi.org/10.3390/polym14204386

ISSN 0128-7702

e-ISSN 2231-8534

Article ID

JST-4780-2023

Download Full Article PDF

Share this article

Related Articles