e-ISSN 2231-8526
ISSN 0128-7680
Aisha Elhadi Abosnina, Zurina Mohamad, Rohah Abdul Majid and Raji Muhammed Abdulwasiu
Pertanika Journal of Science & Technology, Pre-Press
DOI: https://doi.org/10.47836/pjst.32.5.10
Keywords: Aluminium hydroxides (ATH), fire behaviour, flammability, graphene, hybrid flame retardant, rigid polyurethane foam
Published: 2024-08-15
In this study, rigid polyurethane foams (RPUF) were successfully modified using 30 wt.% aluminium hydroxides (ATH), 1.0 pphp silicone surfactant, and different concentrations of graphene, using a one-shot one-step foaming method. This study aims to improve the compressive strength, flame retardancy, and thermal properties of RPUF by creating a synergistic effect between ATH and graphene in fire-retardant RPUF hybrid composites. The effects of a fixed amount of ATH and silicone surfactant and various loadings of graphene on RPUF were investigated. The results show that 0.5 wt.% graphene loading confers the best compression performance on the hybrid composite. Their compressive strength value of 12.58 KPa was higher than virgin RPUF (4.07 KPa) and RPUF/ATH (9.89 KPa). FTIR confirmed the functional groups in the virgin RPUF but could not identify new functional groups in most modified composites. The smallest amount of graphene addition (0.5 wt.%) produced a more stable hybrid composite structure. At 3.0 wt.% graphene addition, the maximum decomposition temperature of the RPUF/ATH hybrid composite was recorded (539oC), which was enhanced by 50% compared to virgin RPUF (296oC), and the highest char residue of 17.46% was observed. The incorporation of graphene enhanced the thermal firmness of the hybrid composite. The study also revealed an enhancement in the fire resistance of the hybrid composite. The LOI and UL-94 results showed that incorporating 3.0 wt.% enables increased LOI value and V-0 classification compared to virgin samples. This hybrid composite can be used in high-performance building insulation applications.
Alis, A., Majid, R. A., & Mohamad, Z. (2019). Morphologies and thermal properties of palm-oil based rigid polyurethane/halloysite nanocomposite foams. Journal-Chemical Engineering Transactions, 72, 415–420. http:// doi.org/10.3303/CET1972070
American Society for Testing and Materials (2001). Standard test method for compressive properties of rigid cellular plastics (ASTM D1621-1). ASTM International.
American Society for Testing and Materials (1997). Standard test Method for measuring the minimum oxygen concentration to support candle-like combustion of plastics (oxygen index) (ASTM D2863-97). ASTM International.
American Society for Testing and Materials (2010). Standard test method for measuring the comparative burning characteristics of solid plastics in a vertical position (ASTM D3801-10). ASTM International.
Baferani, A. H., Keshavarz, R., Asadi, M., & Ohadi, A. R. (2018). Effects of silicone surfactant on the properties of open-cell flexible polyurethane foams. Advances in Polymer Technology, 37(1), 71–83. https://doi.org/10.1002/adv.21643
Baguian, A. F., Ouiminga, S. K., Longuet, C., Caro-Bretelle, A. S., Corn, S., Bere, A., & Sonnier, R. (2021). Influence of density on foam collapse under burning. Polymers, 23(1), Article 13. https://dx.doi.org/10.3390/polym 13010013
Battig, A., Fadul, N. A. R., Frasca, D., Schulze, D,. & Schartel, B. (2021). Multifunctional graphene nanofiller in flame retarded polybutadiene/chloroprene/carbon black composites. e-Polymers, 21(1), 244–262. https://doi.org/10.1515/epoly-2021-0026
Bera, M., & Maji, P. K. (2017). Effect of structural disparity of graphene-based materials on thermo- mechanical and surface properties of thermoplastic polyurethane nanocomposites. Polymer, 119, 118–133. https://doi.org/10.1016/j.polymer.2017.05.019
Chattopadhyay, D. K., & Webster, D. C. (2009). Thermal stability and flame retardancy of polyurethanes. Progress in Polymer Science, 34(10), 1068–1133. https://doi.org/10.1016/j.progpolymsci.2009.06.002
Chen, M. J., Xu, Y. J., Rao, W. H., Huang, J. Q., Wang, X. L., Chen, L., & Wang, Y. Z. (2014). Influence of valence and structure of phosphorus-containing melamine salts on the decomposition and fire behaviours of flexible polyurethane foams. Industrial and Engineering Chemistry Research, 53(21), 8773–8783. https://doi.org/10.1021/ie500691p
Chen, X. Y., Huang, Z. H., Xi, X. Q., Li, J., Fan, X. Y. & Wang, Z. (2018). Synergistic effect of carbon and phosphorus flame retardants in rigid polyurethane foams. Fire and Materials, 42(4), 447–453. https://doi.org/10.1002/fam.2511
Chen, X. Y., Romero, A., Paton-Carrero, A., Lavin-Lopez, M. P., Sanchez-Silva, L., Valverde, J. L., Kaliaguine, S., & Rodrigue, D. (2019). Functionalized graphene–reinforced foams based on polymer matrices. In M. Jawaid, R. Bouhfid & A. K. Qaiss (Eds.), Functionalized Graphene Nanocomposites and their Derivatives (pp. 121-155). Elsevier. https://doi.org/10.1016/B978-0-12-814548-7.00007-6
Chen, X., Li, J., & Gao, M. (2019). Thermal degradation and flame retardant mechanism of the rigid polyurethane foam including functionalized graphene oxide. Polymers, 11(1), Article 78. https://www.mdpi.com/2073-4360/11/1/78
Cheng, J. J., Shi, B. B., Zhou, F. B., & Chen, X. Y. (2014). Effects of inorganic fillers on the flame-retardant and mechanical properties of rigid polyurethane foams. Journal of Applied Polymer Science, 131(10), Article 40253. https://doi.org/10.1002/app.40253
Członka, S., Kairytė, A., Miedzińska, K., Strakowska, A., & Adamus-Włodarczyk, A. (2021). Mechanically strong polyurethane composites reinforced with montmorillonite-modified sage filler (Salvia officinalis L.). International Journal of Molecular Sciences, 22(7), Article 3744. https://doi.org/10.3390/ijms22073744
Dhaliwal, G. S., Anandan, S., Bose, M., Chandrashekhara, K., & Nam, P. (2020). Effects of surfactants on mechanical and thermal properties of soy-based polyurethane foams. Journal of Cellular Plastics. 56(6), 611–629. https://doi.org/10.1177/0021955X20912200
Dittrich, B., Wartig, K. A., Hofmann, D., Mülhaupt, R., & Schartel, B. (2013). Flame retardancy through carbon nanomaterials: Carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene. Polymer Degradation and Stability, 98(8), 1495–1505. https://doi.org/10.1016/j.polymdegradstab.2013.04.009
Eaves, D. (2004). Handbook of polymer foams. Rapra Technology Ltd.
Eling, B., Tomović, Ž., & Schädler, V. (2020). Current and future trends in polyurethanes: An industrial perspective. Macromolecular Chemistry and Physics, 221(14), Article 2000114. https://doi.org/10.1002/macp.202000114
Feng, C., Liang, M., Zhang, Y., Jiang, J., Huang, J., & Liu, H. (2016). Journal of analytical and applied pyrolysis synergistic effect of lanthanum oxide on the flame retardant properties and mechanism of an intumescent flame retardant PLA composites. Journal of Analytical and Applied Pyrolysis, 122, 241–248. https://doi.org/10.1016/j.jaap.2016.09.018
Fenimore, C. P. (1975). Candle-type test for flammability of polymers. In M. Lewin, S. M. Atlas & E. M. Pearce (Eds.), Flame-Retardant Polymeric Materials (pp. 259-267). Springer. https://doi.org/10.1007/978-1-4684-2148-4_9
Gedam, S. S., Chaudhary, A. K., Vijayakumar, R. P., Goswami, A. K., Bajad, G. S., & Pal, D. (2019). Thermal, mechanical and morphological study of carbon nanotubes-graphene oxide and silver nanoparticles based polyurethane composites. Materials Research Express, 6(8), Article 085308. https://doi.org/10.1088/2053-1591/ab1db4
Han, Y., Wu, Y., Shen, M., Huang, X., Zhu, J., & Zhang, X. (2013). Preparation and properties of polystyrene nanocomposites with graphite oxide and graphene as flame retardants. Journal of Materials Science, 48(12), 4214–4222. https://doi.org/10.1007/s10853-013-7234-8
Han, Z., Wang, Y., Dong, W., & Wang, P. (2014). Enhanced fire retardancy of polyethylene/alumina trihydrate composites by graphene nanoplatelets. Materials Letters, 128, 275–278. https://doi.org/10.1016/j.matlet.2014.04.148
Hodlur, R. M., & Rabinal, M. K. (2014). Self assembled graphene layers on polyurethane foam as a highly pressure sensitive conducting composite. Composites Science and Technology, 90, 160–165. https://doi.org/10.1016/j.compscitech.2013.11.005
Huang, G., Chen, S., Song, P., Lu, P., Wu, C., & Liang, H. (2014). Combination effects of graphene and layered double hydroxides on intumescent flame-retardant poly (methyl methacrylate) nanocomposites. Applied Clay Science, 88–89, 78–85. https://doi.org/10.1016/j.clay.2013.11.002
Huang, S., Deng, C., Zhao, Z., Chen, H., Gao, Y., & Wang, Y. (2020). Phosphorus-containing organic-inorganic hybrid nanoparticles for the smoke suppression and flame retardancy of thermoplastic polyurethane. Polymer Degradation and Stability, 178, Article 109179. https://doi.org/10.1016/j.polymdegradstab.2020.109179
Hull, T. R., Witkowski, A., & Hollingbery, L. (2011). Fire retardant action of mineral fillers. Polymer Degradation and Stability, 96(8), 1462–1469. https://doi.org/10.1016/j.polymdegradstab.2011.05.006
Jęsiak, T., Hasiak, M., Łaszcz, A., Chęcmanowski, J., Gerasymchuk, Y., Stachowiak, P., Strek, W., & Hreniak, D. (2023). Thermo-smart composite materials: Exploring the potential of graphene-doped porous silica foams. Construction and Building Materials, 394, Article 132249. https://doi.org/10.1016/j.conbuildmat.2023.132249
Jonjaroen, V., Ummartyotin, S., & Chittapun, S. (2020). Algal cellulose as a reinforcement in rigid polyurethane foam. Algal Research, 51, Article 102057. https://doi.org/10.1016/j.algal.2020.102057
Ju, Z., He, Q., Zhang, H., Zhan, T., Chen, L., Li, S., Hong, L., & Lu, X. (2020). Steam explosion of windmill palm fibre as the filler to improve the acoustic property of rigid polyurethane foams. Polymer Composites, 41(7), 2893–2906. https://doi.org/10.1002/pc.25585
Kairytė, A., Kremensas, A., Balčiūnas, G., Członka, S., & Strąkowska, A. (2020). Closed cell rigid polyurethane foams based on low functionality polyols: Research of dimensional stability and standardised performance properties. Materials, 13(6), Article 1438. https://doi.org/10.3390/ma13061438
Kavšek, M., Figar, N., Mihelič, I., & Krajnc, M. (2022). Melamine-formaldehyde rigid foams – Manufacturing and their thermal insulation properties. Journal of Cellular Plastics, 58(1), 175–193. https://doi.org/10.1177/0021955X21997348
Kerche, E. F., Delucis, R. D. A., Petzhold, C. L., & Amico, S. C. (2020). Rigid bio-based wood/polyurethane foam composites expanded under confinement. Journal of Cellular Plastics, 57(5), 757-768. https://doi.org/10.1177/0021955X20964018
Kim, J. M., Kim, D. H., Kim, J., Lee, J. W., & Kim, W. N. (2017). Effect of graphene on the sound damping properties of flexible polyurethane foams. Macromolecular Research, 25(2), 190–196. https://doi.org/10.1007/s13233-017-5017-9
Kumar, M., & Kaur, R. (2017). Glass fibre reinforced rigid polyurethane foam: Synthesis and characterisation. E-Polymers, 17(6), 517–521. https://doi.org/10.1515/epoly-2017-0072
Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887), 385–388. https://doi.org/10.1126/science.1157996
Lee, S. H., Lee, S. G., Lee, J. S., & Ma, B. C. (2022). Understanding the flame retardant mechanism of intumescent flame retardant on improving the fire safety of rigid polyurethane foam. Polymers, 14(22), Article 4904. https://doi.org/10.3390/polym14224904
Liu, D., & Hu, A. (2020). The influence of environmentally friendly flame retardants on the thermal stability of phase change polyurethane foams. Materials, 13(3), Article 520. https://doi.org/10.3390/ma13030520
Liu, D., Zou, L., Chang, Q., & Xiao, T. (2021). Preparation and properties of rigid polyurethane foams added with graphene oxide-hollow glass microspheres hybrid. Designed Monomers and Polymers, 24(1), 210–217. https://doi.org/10.1080/15685551.2021.1954340
Liu, H., Dong, M., Huang, W., Gao, J., Dai, K., Guo, J., Zheng, G., Liu, C., Shen, C., & Guo, Z. (2017). Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. Journal of Materials Chemistry C, 5(1), 73–83. https://doi.org/10.1039/C6TC03713E
Liu, X., Hao, J., & Gaan, S. (2016). Recent studies on the decomposition and strategies of smoke and toxicity suppression for polyurethane-based materials. RSC Advances, 6(78), 74742–74756. 10.1039/C6RA14345H
Lorusso, C., Vergaro, V., Conciauro, F., Ciccarella, G., & Congedo, P. M. (2017). Thermal and mechanical performance of rigid polyurethane foam added with commercial nanoparticles. Nanomaterials and Nanotechnology, 7(1–19), Article 184798041668411. https://doi.org/10.1177/1847980416684117
Mishra, V. K., & Patel, R. H. (2020). Synthesis and characterization of flame retardant polyurethane: Effect of castor oil polyurethane on its properties. Polymer Degradation and Stability, 175, Article 109132. https://doi.org/10.1016/j.polymdegradstab.2020.109132
Modesti, M., Lorenzetti, A., Simioni, F., & Camino, G. (2002). Expandable graphite as an intumescent flame retardant in polyisocyanurate-polyurethane foams. Polymer Degradation and Stability, 77(2), 195–202. https://doi.org/10.1016/S0141-3910(02)00034-4
Mohamad, Z., Raji, A. M., Hassan, A., & Khan, Z. I. (2021). Novel intumescent flame retardant of ammonium polyphosphate/sepiolite/melamine on rigid polyurethane foam: Morphologies, and flammability properties. Chemical Engineering Transactions, 89, 619–624. https://doi.org/10.3303/CET2189104
Osman, A., Elhakeem, A., Kaytbay, S., & Ahmed, A. (2021). Thermal , electrical and mechanical properties of graphene / nano-alumina / epoxy composites. Materials Chemistry and Physics, 257, Article 123809. https://doi.org/10.1016/j.matchemphys.2020.123809
Pang, H., Wu, Y., Wang, X., Hu, B., & Wang, X. (2019). Recent advances in composites of graphene and layered double hydroxides for water remediation: A review. Chemistry – An Asian Journal, 14(15), 2542–2552. https://doi.org/10.1002/asia.201900493
Peng, H., Wang, X., Li, T., Lou, C., Wang, Y., & Lin, J. (2019). Mechanical properties, thermal stability, sound absorption, and flame retardancy of rigid PU foam composites containing a fire‐retarding agent: Effect of magnesium hydroxide and aluminium hydroxide. Polymers for Advanced Technologies, 30(8), 2045–2055. https://doi.org/10.1002/pat.4637
Pinto, S. C., Marques, P. A. A. P., Vicente, R., Godinho, L., & Duarte, I. (2020). Hybrid structures made of polyurethane/graphene nanocomposite foams embedded within aluminum open-cell foam. Metals, 10(6), Article 768. https://doi.org/10.3390/met10060768
Pokharel, P., Choi, S., & Lee, D. S. (2015). The effect of hard segment length on the thermal and mechanical properties of polyurethane/graphene oxide nanocomposites. Composites Part A, 69, 168–177. https://doi.org/10.1016/j.compositesa.2014.11.010
Rocha, J. D. S., Escócio, V. A., Visconte, L. L. Y., & Pacheco, É. B. A. V. (2021). Thermal and flammability properties of polyethylene composites with fibers to replace natural wood. Journal of Reinforced Plastics and Composites, 40(19–20), 726-740. https://doi.org/10.1177/07316844211002895
Sałasińska, K., Leszczyńska, M., Celiński, M., Kozikowski, P., Kowiorski, K., & Lipińska, L. (2021). Burning behaviour of rigid polyurethane foams with histidine and modified graphene oxide. Materials, 14(5), Article 1184. https://doi.org/10.3390/ma14051184
Shivakumar, H., Renukappa, N. M., Shivakumar, K. N., & Suresha, B. (2020). The reinforcing effect of graphene on the mechanical properties of carbon-epoxy composites. Open Journal of Composite Materials, 10(02), 27–44. https://doi.org/ 10.4236/ojcm.2020.102003.
Shoaib, S., Shahzad Maqsood, K., Nafisa, G., Waqas, A., Muhammad, S., & Tahir, J. (2014). A comprehensive short review on polyurethane foam. International Journal of Innovation and Applied Studies, 12(1), 165–169.
Silva, E. H. P., Aguiar, J. C. F., Waldow, G., Costa, R. R. C., Tita, V., & Ribeiro, M. L. (2022). Compression and morphological properties of a bio-based polyurethane foam with aluminum hydroxide. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 236(7), 1408-1418. https://doi.org/10.1177/14644207211059077
Sinh, L. H., Luong, N. D., & Seppälä, J. (2019). Enhanced mechanical and thermal properties of polyurethane/functionalised graphene oxide composites by in situ polymerisation. Plastics, Rubber and Composites, 48(10), 466–476. https://doi.org/10.1080/14658011.2019.1664820.
Srihanum, A., Noor, M. T. T., Devi, K. P. P., Hoong, S. S., Ain, N. H., Mohd, N. S., Din, N. S. M. N. M., & Kian, Y. S. (2022). Low-density rigid polyurethane foam incorporated with renewable polyol as sustainable thermal insulation material. Journal of Cellular Plastics, 58(3), 485-503.. https://doi.org/10.1177/0021955X211062630
Stoller, M. D., Park, S., Yanwu, Z., An, J., & Ruoff, R. S. (2008). Graphene-based ultracapacitors. Nano Letters, 8(10), 3498–3502. https://doi.org/10.1021/nl802558y
Thirumal, M., Singha, N. K., Khastgir, D., Manjunath, B. S., & Naik, Y. P. (2010). Halogen-free flame-retardant rigid polyurethane foams: Effect of alumina trihydrate and triphenylphosphate on the properties of polyurethane foams. Journal of Applied Polymer Science, 116(4), 2260–2268. https://doi.org/10.1002/app.31626
Thiyagu, C., Manjubala, I., & Narendrakumar, U. (2021). Thermal and morphological study of graphene-based polyurethane composites. Materials Today: Proceedings, 45, 3982–3985. https://doi.org/10.1016/j.matpr.2020.08.641
Titow, W. V. (2001). PVC Technology, 146. Rapra Technology Ltd.
Tiuc, A. E., Borlea, S. I., Nemeș, O., Vermeșan, H., Vasile, O., Popa, F., & Pințoi, R. (2022). New composite materials made from rigid/flexible polyurethane foams with fir sawdust: Acoustic and thermal behavior. Polymers, 14(17), Article 3643. https://doi.org/10.3390/polym14173643
Wang, S., Du, X., Jiang, Y., Xu, J., Zhou, M., Wang, H., Cheng, X., & Du, Z. (2019). Synergetic enhancement of mechanical and fire-resistance performance of waterborne polyurethane by introducing two kinds of phosphorus–nitrogen flame retardant. Journal of colloid and interface science, 537, 197-205. https://doi.org/10.1016/j.jcis.2018.11.003
Wang, Y., Wang, F., Dong, Q., Xie, M., Liu, P., Ding, Y., Zhang, S., Yang, M. & Zheng, G. (2017). Core-shell expandable graphite @ aluminum hydroxide as a flame-retardant for rigid polyurethane foams. Polymer Degradation and Stability, 146, 267–276. https://doi.org/10.1016/j.polymdegradstab.2017.10.017
Wang, Y., Wang, F., Dong, Q., Yuan, W., Liu, P., Ding, Y., Zhang, S., Yang, M., & Zheng, G. (2018). Expandable graphite encapsulated by magnesium hydroxide nanosheets as an intumescent flame retardant for rigid polyurethane foams. Journal of Applied Polymer Science, 135(39), Article 46749. https://doi.org/10.1002/app.46749
Wang, Z. Y., Liu, Y., & Wang, Q. (2010). Flame retardant polyoxymethylene with aluminium hydroxide/melamine/novolac resin synergistic system. Polymer Degradation and Stability, 95(6), 945–954. https://doi.org/10.1016/j.polymdegradstab.2010.03.028
Wrześniewska-Tosik, K., Ryszkowska, J., Mik, T., Wesołowska, E., Kowalewski, T., Pałczyńska, M., Sałasińska, K., Walisiak, D., & Czajka, A. (2020). Composites of semi-rigid polyurethane foams with keratin fibers derived from poultry feathers and flame retardant additives. Polymers, 12(12), Article 2943. https://doi.org/10.3390/polym12122943
Yao, Y., Jin, S., Ma, X., Yu, R., Zou, H., Wang, H., Lv, X., & Shu, Q. (2020). Graphene-containing flexible polyurethane porous composites with improved electromagnetic shielding and flame retardancy. Composites Science and Technology, 200, Article 108457. https://doi.org/10.1016/j.compscitech.2020.108457
Yuan, B., Sun, Y., Chen, X., Shi, Y., Dai, H., & He, S. (2018). Poorly-/well-dispersed graphene: Abnormal influence on flammability and fire behaviour of intumescent flame retardant. Composites Part A: Applied Science and Manufacturing, 109, 345–354. https://doi.org/10.1016/j.compositesa.2018.03.022
Zhang, W., Zhao, Z., & Lei, Y. (2021). Flame retardant and smoke-suppressant rigid polyurethane foam based on sodium alginate and aluminium diethyl phosphite. Designed Monomers and Polymers, 24(1), 46–52. https://doi.org/10.1080/15685551.2021.1879451.
Zhang, X., Sun, S., Yuan, D., Wang, Z., Xie, H., & Liu, Y. (2023). Fabrication of hydrolyzed keratin-modified rigid polyurethane foams and their thermal stability and combustion performance. International Journal of Polymer Analysis and Characterization, 28(7), 662-683. https://doi.org/10.1002/pi.6616.
Zhou, X., Jiang, F., Hu, Z., Wu, F., Gao, M., Chai, Z., Wang, Y., Gu, X., & Wang, Y. (2023). Study on the flame retardancy of rigid polyurethane foam with phytic acid-functionalized graphene oxide. Molecules, 28(17), Article 6267. https://doi.org/10.3390/molecules28176267
Zhu, H., Peng, Z., Chen, Y., Li, G., Wang, L., Tang, Y., Pang, R., Khan, Z. U. H., & Wan, P. (2014). Preparation and characterization of flame retardant polyurethane foams containing phosphorus-nitrogen-functionalized lignin. RSC Advances, 4(98), 55271–55279. https://doi.org/10.1039/C4RA08429B
Zhu, Q., Wang, Z., Zeng, H., Yang, T., & Wang, X. (2021). Effects of graphene on various properties and applications of silicone rubber and silicone resin. Composites Part A: Applied Science and Manufacturing, 142, Article 106240. https://doi.org/10.1016/j.compositesa.2020.106240
Zielonka, P., Duda, S., Lesiuk, G., Błażejewski, W., Wiśniewska, M., Warycha, J., Stabla, P., Smolnicki, M., & Babiarczuk, B. (2022). The effect of flame retardant—Aluminum trihydroxide on mixed mode I/II fracture toughness of epoxy resin. Polymers, 14(20), Article 4386. https://doi.org/10.3390/polym14204386
ISSN 0128-7702
e-ISSN 2231-8534
Share this article