e-ISSN 2231-8526
ISSN 0128-7680
Nurehansafwanah Khalid, Siti Zuraidah Ibrahim, Mohd Nazri A Karim, Wee Fwen Hoon, Aliya Ashraf Dewani, Khuzairi Masrakin and Saidatul Norlyana Azemi
Pertanika Journal of Science & Technology, Pre-Press
DOI: https://doi.org/10.47836/pjst.32.5.08
Keywords: K-band, Ku-band, Riblet Short-Slot coupler, substrate integrated waveguide
Published: 2024-08-08
Substrate Integrated Waveguide (SIW) involves the conductive via holes immersed in a dielectric substrate that connects two substrate plates. This article presents a new SIW technique to enhance the operational bandwidth of the Riblet Short-Slot coupler. To demonstrate the proposed SIW technique, two Riblet Short-Slot couplers are designed and investigated at two different high-frequency ranges, Ku-band and K-band. The bandwidth of the proposed couplers is improved by introducing multiple layers of SIW vias at the center of the couplers’ side wall. Applying this approach minimizes the leakage loss between vias, indicating an improved overall operating bandwidth of 36.31% and 26.32% for Ku-band and K-band, respectively. All vias in both prototypes are realized using an alternative method, without using the Plated-Through-Hole Printed-Circuit-Board (PTH-PCB) machine. In addition, experimental results agree well with the simulated results.
Aloui, R., Houaneb, Z., & Zairi, H. (2018, December 16-19). Modeling a Ka-Band Resonator Cavity with SIW 3-D technology. [Paper presentation]. International Conference on Microelectronics (ICM), Sousse, Tunisa. https://doi.org/10.1109/ICM.2018.8704106
Arnieri, E., Greco, F., Boccia, L., & Amendola, G. (2022). Vertical waveguide-to-microstrip self-diplexing transition for dual-band applications. IEEE Microwave and Wireless Components Letters, 32(12), 1407–1410. https://doi.org/10.1109/LMWC.2022.3193166
Carrera, F., Navarro, D., Baquero-Escudero, M., & Rodrigo-Peñarrocha, V. M. (2010, September 28-30). Compact substrate integrated waveguide directional couplers in Ku and K bands. [Paper presentation]. The 40th European Microwave Conference, Paris, France. https://doi.org/10.23919/EUMC.2010.5616711
Doghri, A., Djerafi, T., Ghiotto, A., & Wu, K. (2015). Substrate integrated waveguide directional couplers for compact three-dimensional integrated circuits. IEEE Transactions on Microwave Theory and Techniques, 63(1), 209–219. https://doi.org/10.1109/TMTT.2014.2376560
Haro-Baez, R. V., Ruiz-Cruz, J. A., Córcoles, J., Montejo-Garai, J. R., & Rebollar, J. M. (2020). A new 4 x 4 rectangular waveguide short-slot coupler in 3d printed technology at Ku-band. Electronics, 9(4), Article 610. https://doi.org/10.3390/electronics9040610
Juneja, S., Pratap, R., & Sharma, R. (2021). Semiconductor technologies for 5G implementation at millimeter wave frequencies – Design challenges and current state of work. Engineering Science and Technology, an International Journal, 24(1), 205–217. https://doi.org/10.1016/j.jestch.2020.06.012
Khalid, N., Ibrahim, S. Z., & Wee, F. H. (2017). Substrate Integrated Waveguide (SIW) coupler on green material substrate for internet of things (IoT) applications. MATEC Web of Conferences, 140, Article 01022. https://doi.org/10.1051/matecconf/201714001022
Kordiboroujeni, Z., & Bornemann, J. (2014). New wideband transition from microstrip line to substrate integrated waveguide. IEEE Transactions on Microwave Theory and Techniques, 62(12), 2983–2989. https://doi.org/10.1109/TMTT.2014.2365794
Kumar, A., & Raghavan, S. (2018). Planar cavity-backed self-diplexing antenna using two-layered structure. Progress in Electromagnetics Research Letters, 76, 91–96. https://doi.org/10.2528/pierl18031605
Kumar, A., & Rosaline, S. I. (2021). Hybrid half-mode SIW cavity-backed diplex antenna for on-body transceiver applications. Applied Physics A, 127(11), Article 834. https://doi.org/10.1007/s00339-021-04978-9
Kumar, G. A., Biswas, B., & Poddar, D. R. (2017). A compact broadband riblet-type three-way power divider in rectangular waveguide. IEEE Microwave and Wireless Components Letters, 27(2), 141–143. https://doi.org/10.1109/LMWC.2016.2646999
Kumar, H., Jadhav, R., & Ranade, S (2012). A review on substrate integrated waveguide and its microstrip interconnect. IOSR Journal of Electronics and Communication Engineering, 3(5), 36–40. https://doi.org/10.9790/2834-0353640
Moscato, S., Moro, R., Pasian, M., Bozzi, M., & Perregrini, L. (2016). Innovative manufacturing approach for paper-based substrate integrated waveguide components and antennas. IET Microwaves, Antennas and Propagation, 10(3), 256–263. https://doi.org/10.1049/iet-map.2015.0125
Nasri, A., Zairi, H., & Gharsallah, A. (2016). Design of a novel structure SIW 90° Coupler. American Journal of Applied Sciences, 13(3), 276–280. https://doi.org/10.3844/AJASSP.2016.276.280
Nayak, A. K., Filanovsky, I. M., Moez, K., & Patnaik, A. (2022). A broadband coaxial line-to-SIW transition using aperture-coupling method. IEEE Microwave and Wireless Components Letters, 32(11), 1271–1274. https://doi.org/10.1109/LMWC.2022.3182933
Ruiz-Cruz, J. A., Montejo-Garai, J. R., & Rebollar, J. M. (2011). Short-slot E- and H-plane waveguide couplers with an arbitrary power division ratio. International Journal of Electronics, 98(1), 11–24. https://doi.org/10.1080/00207217.2010.488913
Ruiz-Cruz, J. A., Montejo-Garai, J. R., Rebollar, J. S. M., Daganzo, A. I., & Hidalgo-Carpintero, I. (2007, June 9-15). Design of riblet-type couplers for Ka band applications. [Paper presentation]. IEEE Antennas and Propagation Society International Symposium, Honolulu, USA. https://doi.org/10.1109/APS.2007.4396486
Sabri, S. S., Ahmad, B. H., & Othman, A. R. (2013, September 22-25). Design and fabrication of X-band substrate integrated waveguide directional coupler. [Paper presentation]. IEEE Symposium on Wireless Technology and Applications (ISWTA), Sarawak, Malaysia. https://doi.org/10.1109/ISWTA.2013.6688784
Srivastava, R., Mukherjee, S., & Biswas, A. (2015, July 19-24). Design of broadband planar substrate integrated waveguide (SIW) transvar coupler. [Paper presentation]. IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, Canada. https://doi.org/10.1109/APS.2015.7305090
Tu, H., Hong, H., Zhang, Y., Zhou, L., & Li, X. (2022). The effect of conductive layer thickness on the function of screen printing fabric-based microstrip line. The Journal of The Textile Institute, 114(8), 1119-1124. https://doi.org/10.1080/00405000.2022.2109104
Wu, K. E., Bozzi, M., & Fonseca, N. J. G. (2021). Substrate integrated transmission lines : Review and applications. IEEE Journal of Microwaves, 1(1), 345–363. https://doi.org/10.1109/JMW.2020.3034379
ISSN 0128-7702
e-ISSN 2231-8534
Share this article