Home / Pre-Press / JST-2627-2021

 

The Estimation of Iron Oxide Content in Soil based on Landsat 8 OLI TIRS Imagery in Wetland Areas

Deasy Arisanty, Aswin Nur Saputra, Akhmad Munaya Rahman, Karunia Puji Hastuti and Dedi Rosadi

Pertanika Journal of Science & Technology, Pre-Press

DOI: https://doi.org/10.47836/pjst.29.4.32

Published: 2021-10-22

Wetland areas are volatile and have high iron content. In this study, through a remote sensing approach, especially using Landsat Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) imagery, we discussed the method to estimate the presence of iron oxide in the wetlands of South Kalimantan in 2018, 2019, and 2020. Interpretation of the Landsat OLI TIRS was employed in April 2018, August 2018, February 2019, August 2019, March 2020, and August 2020. The band ratio method was used to determine the distribution of samples in this study. The results of the iron oxide index from the image were performed regression and correlation analysis with field measurement and laboratory test results to validate the oxide index values. The results showed that the iron oxide index value in the dry season was higher than in the rainy season. Iron oxide index value in open land was higher than in vegetation cover. The wetland was in dry condition during the dry season, making it easier to detect iron oxide values. Vegetation cover could reduce the iron oxide index value on the soil surface so that the iron oxide value was more easily identified in open land. The results of linear regression testing for the wet season sample obtained a coefficient of determination R² = 0.413, while the results of linear regression testing for the dry season sample obtained a coefficient of determination R² = 0.667. Thus, the Landsat image has strong enough to estimate the iron oxide index in the wetland area of Kalimantan.

  • Aisabokhae, J. E., & Oresajo, S. B. (2018). Supervised classification of Landsat-8 band ratio images for geological interpretation of Sokoto, Nigeria. South African Journal of Geomatics, 7(3), 360-371.

  • Arisanty, D. (2017). The influence of tide on suspended sediment transport in barito delta, Southern Kalimantan, Indonesia. Ecology, Environment and Conservation, 23(2), 696-703.

  • Arisanty, D., Adyatma, S., Muhaimin, M., & Nursaputra, A. (2019). Landsat 8 OLI TIRS imagery ability for monitoring post forest fire changes. Pertanika Journal of Science & Technology, 27(3), 1105-1120.

  • Arisanty, D., Jędrasiak, K., Rajiani, I., & Grabara, J. (2020). The destructive impact of burned peatlands to physical and chemical properties of soil. Acta Montanistica Slovaca, 25(2), 213-223. https://doi.org/10.46544/AMS.v25i2.8

  • Cardoso, G. F., Souza, C., & Souza-Filho, P. W. M. (2014). Using spectral analysis of Landsat-5 TM images to map coastal wetlands in the Amazon River mouth, Brazil. Wetlands Ecology and Management, 22(1), 79-92. https://doi.org/10.1007/s11273-013-9324-4

  • D’Arcy, M., Mason, P. J., Roda-Boluda, D. C., Whittaker, A. C., Lewis, J. M. T., & Najorka, J. (2018). Alluvial fan surface ages recorded by Landsat-8 imagery in Owens Valley, California. Remote Sensing of Environment, 216, 401-414. https://doi.org/10.1016/j.rse.2018.07.013

  • Darmawan, I. G. B., Yassar, M. F., Elvarani, A. Y., Vira, B. A., & Damayanti, L. (2020). Preliminary study of mining material prospects based on hydrothermal alteration distribution using composite and density slicing of Landsat 8 image in Ulubongka Regency, Central Sulawesi. PROMINE, 8(1), 1-7. https://doi.org/10.33019/promine.v8i1.1799

  • Davranche, M., Dia, A., Fakih, M., Nowack, B., Gruau, G., Ona-nguema, G., Petitjean, P., Martin, S., & Hochreutener, R. (2013). Organic matter control on the reactivity of Fe (III)-oxyhydroxides and associated As in wetland soils: A kinetic modeling study. Chemical Geology, 335, 24-35. https://doi.org/10.1016/j.chemgeo.2012.10.040

  • Demattê, J. A. M., Horák-Terra, I., Beirigo, R. M., da Silva Terra, F., Marques, K. P. P., Fongaro, C. T., Silva, A. C., & Vidal-Torrado, P. (2017). Genesis and properties of wetland soils by VIS-NIR-SWIR as a technique for environmental monitoring. Journal of Environmental Management, 197, 50-62. https://doi.org/10.1016/j.jenvman.2017.03.014

  • Ducart, D. F., Silva, A. M., Toledo, C. L. B., & de Assis, L. M. (2016). Mapping iron oxides with Landsat-8/OLI and EO-1/Hyperion imagery from the Serra Norte iron deposits in the Carajás Mineral Province, Brazil. Brazilian Journal of Geology, 46(3), 331-349. https://doi.org/10.1590/2317-4889201620160023

  • Frutuoso, R., Lima, A., & Teodoro, A. C. (2021). Application of remote sensing data in gold exploration: Targeting hydrothermal alteration using Landsat 8 imagery in northern Portugal. Arabian Journal of Geosciences, 14(6), 1-18. https://doi.org/10.14419/ijbas.v3i3.2821

  • Govil, H., Tripathi, M. K., Diwan, P., & Guha, S. (2018). Identification of iron oxides minerals in Western Jahajpur Region, India using aviris-ng hyperspectral remote sensing. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 43(5), 233237. https://doi.org/10.5194/isprs-archives-XLII-5-233-2018

  • Guan, J., Qi, K., Wang, J., Zhuang, J., Yuan, X., Yan, B., Lu, N., & Qu, J. (2020). Effects of conversion from boreal natural wetlands to rice paddy fields on the dynamics of total dissolved iron during extreme precipitation events. Chemosphere, 242, Article 125153. https://doi.org/10.1016/j.chemosphere.2019.125153

  • Guo, B., Zang, W., Luo, W., Wen, Y., Yang, F., Han, B., Fan, Y., Chen, X., Qi, Z., & Wang, Z. (2020). Detection model of soil salinization information in the Yellow River Delta based on feature space models with typical surface parameters derived from Landsat 8 OLI image. Geomatics, Natural Hazards and Risk, 11(1), 288-300. https://doi.org/10.1080/19475705.2020.1721573

  • Guo, M., Li, J., Sheng, C., Xu, J., & Wu, L. (2017). A review of wetland remote sensing. Sensors, 17(4), Article 777. https://doi.org/10.3390/s17040777

  • Haq, M. A. (2017). Analysis of land surface temperature, distribution of clay minerals and fault fracture density using Landsat 8 imagery in the Dieng geothermal system and its surroundings, Central Java Province, Indonesia (Doctoral dissertation). Faculty of Engineering, Diponegoro University, Semarang, Indonesia.

  • Ihlen, V. (2019). Landsat 8 data users handbook. U.S. Geological Survey. USGS Publication.

  • Kamal, M., Adi, N. S., & Arjasakusuma, S. (2012). Jaz EL-350 VIS NIR portable spectrometer: Panduan operasional pengukuran dan pengelolaan data pantulan spektral obyek (Versi 1 2012) [Jaz EL-350 VIS NIR portable spectrometer: Operational guide for spectral object data measuring and managing (Version 1/2012)]. Universitas Gadjah Mada.

  • Liu, J. G., & Mason, P. J. (2009). Essential image processing and GIS for remote sensing (1st Edit). Wiley Online Library. https://doi.org/10.1002/9781118687963

  • Meng, L., Zhou, S., Zhang, H., & Bi, X. (2016). Estimating soil salinity in different landscapes of the Yellow River Delta through Landsat OLI/TIRS and ETM+ Data. Journal of Coastal Conservation, 20(4), 271-279. https://doi.org/10.1007/s11852-016-0437-9

  • Nugroho, Y. A., & Purwanto, T. H. (2013). Study of estimation iron oxide content using mutispectral medium resolution imagery. Jurnal Bumi Indonesia, 2(3), 117-126.

  • Pour, A. B., & Hashim, M. (2015). Hydrothermal alteration mapping from Landsat-8 data, Sar Cheshmeh copper mining district, south-eastern Islamic Republic of Iran. Journal of Taibah University for Science, 9(2), 155-166. https://doi.org/10.1016/j.jtusci.2014.11.008

  • Putra, I. D., Nasution, R. A. F., & Harijoko, A. (2017). Aplikasi Landsat 8 OLI/TIRS dalam mengidentifikasi alterasi hidrotermal skala regional: studi kasus Daerah Rejang Lebong dan sekitarnya, Provinsi Bengkulu [Landsat 8 OLI/TIRS application in identifying regional scale hydrothermal alterations: A case study]. Proseding Seminar Nasional Kebumian, 10, 1812-1826.

  • Qing, K., Zhao, Y. J., & Cui, X. (2019). Research on information extraction technology of iron oxide based on airborne hyperspectral data. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium (pp. 6764-6767). IEEE Publishing. https://doi.org/10.1109/IGARSS.2019.8900647

  • Radeva, K., Velizarova, E., & Dancheva, A. (2019). Land cover monitoring as part of a survey on wetland ecosystem conservation in the Negovan village area using remote sensing tools. Glasnik Sumarskog Fakulteta, 119, 175-188. https://doi.org/10.2298/GSF1919175R

  • Ridwan, M. A., Radzi, N. A. M., Ahmad, W., Mustafa, I. S., Din, N. M., Jalil, Y. E., Isa, A. M., Othman, N. S., & Zaki, W. (2018). Applications of landsat-8 data: A Survey. International Journal of Engineering & Technology, 7(4), 436-441. https://doi.org/10.14419/ijet.v7i4.35.22858

  • Rockwell, B. W. (2013). Automated mapping of mineral groups and green vegetation from Landsat Thematic Mapper imagery with an example from the San Juan Mountains, Colorado. US Geological Survey Scientific Investigations Map.

  • Rozpondek, R., Wancisiewicz, K., & Kacprzak, M. (2016). GIS in the studies of soil and water environment. Journal of Ecological Engineering, 17(3), 134-142. https://doi.org/10.12911/22998993/63476

  • Silvero, N. E. Q., Demattê, J. A. M., Amorim, M. T. A., dos Santos, N. V., Rizzo, R., Safanelli, J. L., Poppiel, R. R., de Sousa Mendes, W., & Bonfatti, B. R. (2021). Soil variability and quantification based on Sentinel-2 and Landsat-8 bare soil images: A comparison. Remote Sensing of Environment, 252, Article 112117. https://doi.org/10.1016/j.rse.2020.112117

  • Sulaeman, Y., Poggio, L., Minasny, B., & Nursyamsi, D. (2020). Tropical wetlands-innovation in mapping and management. International Workshop on Tropical Wetlands: Innovation in Mapping and Management, 2018, Article 197. https://doi.org/10.1201/9780429264467

  • Traore, M., Wambo, J. D. T., Ndepete, C. P., Tekin, S., Pour, A. B., & Muslim, A. M. (2020). Lithological and alteration mineral mapping for alluvial gold exploration in the south east of Birao area, Central African Republic using Landsat-8 Operational Land Imager (OLI) data. Journal of African Earth Sciences, 170, Article 103933. https://doi.org/10.1016/j.jafrearsci.2020.103933

  • Xing, L., & Niu, Z. (2019). Mapping and analyzing China’s wetlands using MODIS time series data. Wetlands Ecology and Management, 27(5), 693-710. https://doi.org/10.1007/s11273-019-09687-y

  • Zabloskii, V. R. (2019). The method of detection of clay minerals and iron oxide based on landsat multispectral images (as exemplified in the Territory of Thai Nguyen Province, Vietnam). Mining Science and Technology, 4(1), 65-75. https://doi.org/10.17073/2500-0632-2019-1-65-75

  • Zhai, M. (2019). Inversion of organic matter content in wetland soil based on Landsat 8 remote sensing image. Journal of Visual Communication and Image Representation, 64, Article 102645. https://doi.org/10.1016/j.jvcir.2019.102645

  • Zribi, M., Baghdadi, N., & Nolin, M. (2011). Remote Sensing of Soil. Applied and Environmental Soil Science, 2011, 1-2. https://doi.org/10.1155/2011/904561

ISSN 0128-7702

e-ISSN 2231-8534

Article ID

JST-2627-2021

Download Full Article PDF

Share this article

Related Articles