PERTANIKA JOURNAL OF SOCIAL SCIENCES AND HUMANITIES

 

e-ISSN 2231-8534
ISSN 0128-7702

Home / Regular Issue / JSSH Vol. 46 (3) Aug. 2023 / JTAS-2681-2023

 

Molecular Characterisation of Partial Structural Genes of Fowl Adenovirus Serotype 8b UPMT1901 Field Strain Isolate Associated with the Inclusion Body Hepatitis in Malaysia’s Commercial Broiler Chickens

Bahiyah Azli, Nur Farhana Salim, Abdul Rahman Omar, Mohd Hair-Bejo, Norfitriah Mohamed Sohaimi and Nurulfiza Mat Isa

Pertanika Journal of Social Science and Humanities, Volume 46, Issue 3, August 2023

DOI: https://doi.org/10.47836/pjtas.46.3.15

Keywords: Adenovirus, FAdV, fibre, fowl adenovirus, hexon, inclusion body hepatitis, phylogenetic analysis, serotype

Published on: 30 August 2023

Fowl adenovirus (FAdV) is reported to pose a severe risk to the poultry industry, affecting food and nutrient security nationally and globally. FAdV is identified as the primary pathogen for inclusion body hepatitis (IBH) disease in avians during outbreaks in farms. Numerous interventions have been employed to reduce the chicken’s mortality rate in future outbreaks, such as local autogenous vaccine production that has yet to be successfully commercialised. Fibre and hexon protein are two out of the three major components of the adenoviral capsid, identified to contribute towards FAdV virulence. Hence, this study aims to determine the fibre and hexon gene molecular changes of a local isolate, FAdV UPMT1901, in Malaysia’s recent IBH outbreak and identify the evolutionary relationship with known FAdV strains. Propagation of FAdV UPMT1901 was performed in specific pathogen-free embryonated chicken prior to genomic extraction. The genes were amplified, and the retrieved nucleotide sequences were aligned with the published FAdV sequences. The phylogenetic tree analysis showed that UPMT1901 partial fibre and hexon genes are 99% similar to other known FAdV serotype 8b (FAdV-8b) species, especially the published Malaysian FAdV-8b isolates. Interestingly, the amino acid residue analysis further supported consistent residues amongst Malaysian isolates at fibre positions T176A, Q195H, D213E, S243T, A258V, F335Y, and F353V and hexon position T422M. These findings elucidate the structural proteins’ functional capacity and molecular diversity, specifically amongst Malaysian FAdV isolates and FAdV-8b, while contributing to global initiatives to establish biosecurity, such as a vaccine or antiviral production against future outbreaks.

  • Absalón, A. E., Morales-Garzón, A., Vera-Hernández, P. F., Cortés-Espinosa, D. V., Uribe-Ochoa, S. M., García, L. J., & Lucio-Decanini, E. (2017). Complete genome sequence of a non-pathogenic strain of Fowl Adenovirus serotype 11: Minimal genomic differences between pathogenic and non-pathogenic viruses. Virology, 501, 63–69. https://doi.org/10.1016/j.virol.2016.11.006

  • Ahmed, S. (2020). Development of a live attenuated vaccine against fowl adenovirus by mutating fiber gene using CRISPR-Cas9 technology [Doctoral thesis, Universiti Putra Malaysia]. Universiti Putra Malaysia Institutional Repository. http://psasir.upm.edu.my/id/eprint/92705/

  • Ahmed, S., Mariatulqabtiah, A. R., Bejo, M. H., Omar, A. R., Ideris, A., & Mat Isa, N. (2021). Molecular markers and phylogenetic analysis of UPMT27, a field isolate of the Malaysian fowl adenovirus associated with inclusion body hepatitis. Pertanika Journal of Science and Technology, 29(1), 547-563. https://doi.org/10.47836/pjst.29.1.29

  • Alzohairy, A. M. (2011). BioEdit: An important software for molecular biology. GERF Bulletin of Biosciences, 2(1), 60–61.

  • Butterworth, A., & Weeks, C. (2010). The impact of disease on welfare. In I. Duncan & P. Hawkins (Eds.), The welfare of domestic fowl and other captive birds (Vol. 9, pp. 189–218). Springer. https://doi.org/10.1007/978-90-481-3650-6_8

  • Cizmecigil, U. Y., Umar, S., Yilmaz, A., Bayraktar, E., Turan, N., Tali, B., Aydin, O., Tali, H. E., Yaramanoglu, M., Yilmaz, S. G., Kolukisa, A., Sadeyen, J.-R., Iqbal, M., & Yilmaz, H. (2020). Characterisation of fowl adenovirus (FAdV-8b) strain concerning the geographic analysis and pathological lesions associated with inclusion body hepatitis in broiler flocks in Turkey. Journal of Veterinary Research, 64(2), 231–237. https://doi.org/10.2478/jvetres-2020-0026

  • Conesa, A., Götz, S., García-Gómez, J. M., Terol, J., Talón, M., & Robles, M. (2005). Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18), 3674–3676. https://doi.org/10.1093/bioinformatics/bti610

  • Crawford-Miksza, L., & Schnurr, D. P. (1996). Analysis of 15 adenovirus hexon proteins reveals the location and structure of seven hypervariable regions containing serotype-specific residues. Journal of Virology, 70(3), 1836–1844. https://doi.org/10.1128/jvi.70.3.1836-1844.1996

  • Davison, A. J., Benkő, M., & Harrach, B. (2003). Genetic content and evolution of adenoviruses. Journal of General Virology, 84(11), 2895–2908. https://doi.org/10.1099/vir.0.19497-0

  • De Luca, C., Schachner, A., Mitra, T., Heidl, S., Liebhart, D., & Hess, M. (2020). Fowl adenovirus (FAdV) fiber-based vaccine against inclusion body hepatitis (IBH) provides type-specific protection guided by humoral immunity and regulation of B and T cell response. Veterinary Research, 51, 143. https://doi.org/10.1186/s13567-020-00869-8

  • Department of Statistics Malaysia. (2022a). Selected agricultural indicators, Malaysia, 2022. DOSM. https://dosm.gov.my/site/downloadrelease?id=selected-agricultural-indicators-malaysia-2022&lang=English

  • Department of Statistics. (2022b). Supply and utilization accounts selected agricultural commodities, Malaysia 2017-2021. DOSM. https://v2.dosm.gov.my/portal-main/release-content/supply-and-utilization-accounts-selected-agricultural-commodities-malaysia-2017-2021

  • Fu, G., Chen, H., Huang, Y., Cheng, L., Fu, Q., Shi, S., Wan, C., Chen, C., & Lin, J. (2013). Full genome sequence of egg drop syndrome virus strain FJ12025 isolated from muscovy duckling. Genome Announcements, 1(4), e00623-13. https://doi.org/10.1128/genomeA.00623-13

  • Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., & Bairoch, A. (2003). ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research, 31(13), 3784–3788. https://doi.org/10.1093/nar/gkg563

  • Grgić, H., Krell, P. J., & Nagy, É. (2014). Comparison of fiber gene sequences of inclusion body hepatitis (IBH) and non-IBH strains of serotype 8 and 11 fowl adenoviruses. Virus Genes, 48, 74–80. https://doi.org/10.1007/s11262-013-0995-y

  • Grgić, H., Poljak, Z., Sharif, S., & Nagy, É. (2013). Pathogenicity and cytokine gene expression pattern of a serotype 4 fowl adenovirus isolate. PLOS One, 8(10), e77601. https://doi.org/10.1371/journal.pone.0077601

  • Grgić, H., Yang, D.-H., & Nagy, É. (2011). Pathogenicity and complete genome sequence of a fowl adenovirus serotype 8 isolate. Virus Research, 156(1–2), 91–97. https://doi.org/10.1016/j.virusres.2011.01.002

  • Gupta, A., Popowich, S., Ojkic, D., Kurukulasuriya, S., Chow-Lockerbie, B., Gunawardana, T., Goonewardene, K., Karunarathna, R., Ayalew, L. E., Ahmed, K. A., Tikoo, S. K., Willson, P., & Gomis, S. (2018). Inactivated and live bivalent fowl adenovirus (FAdV8b + FAdV11) breeder vaccines provide broad-spectrum protection in chicks against inclusion body hepatitis (IBH). Vaccine, 36(5), 744–750. https://doi.org/10.1016/j.vaccine.2017.12.047

  • Hafez, M. H. (2011). Avian adenovirus infections with special attention to inclusion body hepatitis/hydropericardium syndrome and egg drop syndrome. Pakistan Veterinary Journal, 31(2), 85–92.

  • Hair-Bejo, M. (2005). Inclusion body hepatitis in a flock of a commercial broilers chickens. Journal of Veterinary Malaysia, 17(1), 23–26.

  • Islam, M. N., Rahman, M. M., Rahman, M. K., & Alam, J. (2023). First evidence of fowl adenovirus induced inclusion body hepatitis in chicken in Bangladesh. Canadian Journal of Infectious Diseases and Medical Microbiology, 2023, 7253433. https://doi.org/10.1155/2023/7253433

  • Jordan, A. B., Blake, L., Bisnath, J., Ramgattie, C., Carrington, C. V., & Oura, C. A. L. (2019). Identification of four serotypes of fowl adenovirus in clinically affected commercial poultry co-infected with chicken infectious anaemia virus in Trinidad and Tobago. Transboundary and Emerging Diseases, 66(3), 1341–1348. https://doi.org/10.1111/tbed.13162

  • Jørgensen, P. H., Otte, L., Nielsen, O. L., & Bisgaard, M. (1995). Influence of subclinical virus infections and other factors on broiler flock performance. British Poultry Science, 36(3), 455–463. https://doi.org/10.1080/00071669508417791

  • Juliana, M. A., Nurulfiza, M. I., Hair-Bejo, M., Abdul Rahman, O., & Aini, I. (2014). Molecular characterization of fowl adenoviruses isolated from inclusion body hepatitis outbreaks in commercial broiler chickens in Malaysia. Pertanika Journal of Tropical Agriculture Science, 37(4), 483–497.

  • Kaján, G. L., Affranio, I., Tóthné Bistyák, A., Kecskeméti, S., & Benkő, M. (2019). An emerging new fowl adenovirus genotype. Heliyon, 5(5), e01732. https://doi.org/10.1016/j.heliyon.2019.e01732

  • Kinsley, N. (2020, July 20). Popularity of poultry continues globally. Poultry World. https://www.poultryworld.net/poultry/popularity-of-poultry-continues-globally/

  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platform. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096

  • Li, S., Zhao, R., Yang, Q., Wu, M., Ma, J., Wei, Y., Pang, Z., Wu, C., Liu, Y., Gu, Y., Liao, M., & Sun, H. (2022). Phylogenetic and pathogenic characterization of current fowl adenoviruses in China. Infection, Genetics and Evolution, 105, 105366. https://doi.org/10.1016/j.meegid.2022.105366

  • Liu, Y., Wan, W., Gao, D., Li, Y., Yang, X., Liu, H., Yao, H., Chen, L., Wang, C., & Zhao, J. (2016). Genetic characterization of novel fowl aviadenovirus 4 isolates from outbreaks of hepatitis-hydropericardium syndrome in broiler chickens in China. Emerging Microbes and Infections, 5(1), 1-8. https://doi.org/10.1038/emi.2016.115

  • Majdi, A., & Bejo, M. H. (2015). Pathogenecity of Malaysian fowl adenovirus isolates in specific pathogen free chickens. In R. Abdullah, M. A. Omar, A. R. M. A. R. Bahaman, S. A. Aziz, S. S. Arshad, G. T. Selvarajah, & W. M. S. M. Mossadeq (Eds.), 10th Proceeding of the Seminar of Veterinary Sciences (pp. 15–19). Universiti Putra Malaysia Press. https://vet.upm.edu.my/upload/dokumen/2021090610331010th_Proceedings_of_the_Seminar_on_Veterinary_Sciences.pdf

  • Marek, A., Kaján, G. L., Kosiol, C., Benkő, M., Schachner, A., & Hess, M. (2016). Genetic diversity of species Fowl aviadenovirus D and Fowl aviadenovirus E. Journal of General Virology, 97(9), 2323–2332. https://doi.org/10.1099/jgv.0.000519

  • Marek, A., Kosiol, C., Harrach, B., Kaján, G. L., Schlötterer, C., & Hess, M. (2013). The first whole genome sequence of a fowl adenovirus B strain enables interspecies comparisons within the genus Aviadenovirus. Veterinary Microbiology, 166(1–2), 250–256. https://doi.org/10.1016/j.vetmic.2013.05.017

  • Marek, A., Nolte, V., Schachner, A., Berger, E., Schlötterer, C., & Hess, M. (2012). Two fiber genes of nearly equal lengths are a common and distinctive feature of Fowl adenovirus C members. Veterinary Microbiology, 156(3–4), 411–417. https://doi.org/10.1016/j.vetmic.2011.11.003

  • Mat Isa, N., Mohd Ayob, J., Ravi, S., Mustapha, N. A., Ashari, K. S., Bejo, M. H., Omar, A. R., & Ideris, A. (2019). Complete genome sequence of fowl adenovirus-8b UPM04217 isolate associated with the inclusion body hepatitis disease in commercial broiler chickens in Malaysia reveals intermediate evolution. VirusDisease, 30, 426–432. https://doi.org/10.1007/s13337-019-00530-9

  • McFerran, J. B., & Smyth, J. A. (2000). Avian adenoviruses. Revue Scientifique et Technique, 19(2), 589–601. https://doi.org/10.20506/rst.19.2.1238

  • Meulemans, G., Boschmans, M., van den Berg, T. P., & Decaesstecker, M. (2001). Polymerase chain reaction combined with restriction enzyme analysis for detection and differentiation of fowl adenoviruses. Avian Pathology, 30(6), 655–660. https://doi.org/10.1080/03079450120092143

  • Nakamura, K., Mase, M., Yamamoto, Y., Takizawa, K., Kabeya, M., Wakuda, T., Matsuda, M., Chikuba, T., Yamamoto, Y., Ohyama, T., Takahashi, K., Sato, N., Akiyama, N., Honma, H., & Imai, K. (2011). Inclusion body hepatitis caused by fowl adenovirus in broiler chickens in Japan, 2009–2010. Avian Diseases, 55(4), 719–723. https://doi.org/10.1637/9813-052511-Case.1

  • Niczyporuk, J. S. (2018). Deep analysis of loop L1 HVRs1-4 region of the hexon gene of adenovirus field strains isolated in Poland. PLOS One, 13(11), e0207668. https://doi.org/10.1371/journal.pone.0207668

  • Niu, D., Feng, J., Duan, B., Shi, Q., Li, Y., Chen, Z., Ma, L., Liu, H., & Wang, Y. (2022). Epidemiological survey of avian adenovirus in China from 2015 to 2021 and the genetic variability of highly pathogenic Fadv-4 isolates. Infection, Genetics and Evolution, 101, 105277. https://doi.org/10.1016/j.meegid.2022.105277

  • Ojkic, D., & Nagy, É. (2000). The complete nucleotide sequence of fowl adenovirus type 8. Microbiology, 81(7), 1833–1837. https://doi.org/10.1099/0022-1317-81-7-1833

  • Pallister, J., Wright, P. J., & Sheppard, M. (1996). A single gene encoding the fiber is responsible for variations in virulence in the fowl adenoviruses. Journal of Virology, 70(8), 5115–5122. https://doi.org/10.1128/JVI.70.8.5115-5122.1996

  • Pan, Q., Liu, L., Gao, Y., Liu, C., Qi, X., Zhang, Y., Wang, Y., Li, K., Gao, L., Wang, X., & Cui, H. (2017). Characterization of a hypervirulent fowl adenovirus 4 with the novel genotype newly prevalent in China and establishment of reproduction infection model of hydropericardium syndrome in chickens. Poultry Science, 96(6), 1581–1588. https://doi.org/10.3382/ps/pew431

  • Qinghua, H., Xinxin, M., Xiaoying, H., Yanyan, H., Shaohua, Y., Lin, Z., Ning, C., & Chuantian, X. (2019). Pathogenicity and complete genome sequence of a fowl adenovirus serotype 8b isolate from China. Poultry Science, 98(2), 573–580. https://doi.org/10.3382/ps/pey425

  • Rux, J. J., Kuser, P. R., & Burnett, R. M. (2003). Structural and phylogenetic analysis of adenovirus hexons by use of high-resolution x-ray crystallographic, molecular modeling, and sequence-based methods. Journal of Virology, 77(17), 9553–9566. https://doi.org/10.1128/JVI.77.17.9553-9566.2003

  • Sabarudin, N. S., Tan, S. W., Phang, Y. F., & Omar, A. R. (2021). Molecular characterization of Malaysian fowl adenovirus (FAdV) serotype 8b species E and pathogenicity of the virus in specific-pathogen-free chicken. Journal of Veterinary Science, 22(4), e42. https://doi.org/10.4142/jvs.2021.22.e42

  • Schachner, A., Gonzalez, G., Endler, L., Ito, K., & Hess, M. (2019). Fowl adenovirus (FAdV) recombination with intertypic crossovers in genomes of FAdV-D and FAdV-E, displaying hybrid serological phenotypes. Viruses, 11(12), 1094. https://doi.org/10.3390/v11121094

  • Schachner, A., Grafl, B., & Hess, M. (2021). Spotlight on avian pathology: Fowl adenovirus (FAdV) in chickens and beyond – an unresolved host-pathogen interplay. Avian Pathology, 50(1), 2–5. https://doi.org/10.1080/03079457.2020.1810629

  • Schachner, A., Marek, A., Jaskulska, B., Bilic, I., & Hess, M. (2014). Recombinant FAdV-4 fiber-2 protein protects chickens against hepatitis–hydropericardium syndrome (HHS). Vaccine, 32(9), 1086–1092. https://doi.org/10.1016/j.vaccine.2013.12.056

  • Schonewille, E., Jaspers, R., Paul, G., & Hess, M. (2010). Specific-pathogen-free chickens vaccinated with a live FAdV-4 vaccine are fully protected against a severe challenge even in the absence of neutralizing antibodies. Avian Diseases, 54(2), 905–910. https://doi.org/10.1637/8999-072309-Reg.1

  • Shah, M. S., Ashraf, A., Khan, M. I., Rahman, M., Habib, M., Chughtai, M. I., & Qureshi, J. A. (2017). Fowl adenovirus: History, emergence, biology and development of a vaccine against hydropericardium syndrome. Archives of Virology, 162, 1833–1843. https://doi.org/10.1007/s00705-017-3313-5

  • Slaine, P. D., Ackford, J. G., Kropinski, A. M., Kozak, R. A., Krell, P. J., & Nagy, É. (2016). Molecular characterization of pathogenic and nonpathogenic fowl aviadenovirus serotype 11 isolates. Canadian Journal of Microbiology, 62(12), 993–1002. https://doi.org/10.1139/cjm-2016-0297

  • Sohaimi, N. M. (2018). Development of live attenuated fowl adenovirus isolate of Malaysia for vaccine production [Doctoral thesis, Universiti Putra Malaysia]. Universiti Putra Malaysia Institutional Repository. http://psasir.upm.edu.my/id/eprint/76334/1/FPV 2018 26 IR.pdf

  • Sohaimi, N. M., & Clifford, U. C. (2021). Fowl adenovirus in chickens: Diseases, epidemiology, impact, and control strategies to the Malaysian poultry industry - A review. Journal of World’s Poultry Research, 11(3), 387–396. https://doi.org/10.36380/jwpr.2021.46

  • Sohaimi, N. M., Bejo, M. H., Omar, A. R., Ideris, A., & Isa, N. M. (2018). Hexon and fiber gene changes in an attenuated fowl adenovirus isolate from Malaysia in embryonated chicken eggs and its infectivity in chickens. Journal of Veterinary Science, 19(6), 759–770. https://doi.org/10.4142/jvs.2018.19.6.759

  • Sohaimi, N. M., Omar, A. R., & Ideris, A. (2018). Molecular detection and pathogenicity of fowl adenovirus. International Journal of Agricultural Sciences and Veterinary Medicine, 6(1), 73-84.

  • Steer, P. A., Kirkpatrick, N. C., O’Rourke, D., & Noormohammadi, A. H. (2009). Classification of fowl adenovirus serotypes by use of high-resolution melting-curve analysis of the hexon gene region. Journal of Clinical Microbiology, 47(2), 311–321. https://doi.org/10.1128/JCM.01567-08

  • Steer, P. A., O’Rourke, D., Ghorashi, S., & Noormohammadi, A. (2011). Application of high-resolution melting curve analysis for typing of fowl adenoviruses in field cases of inclusion body hepatitis. Australian Veterinary Journal, 89(5), 184–192. https://doi.org/10.1111/j.1751-0813.2011.00695.x

  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680. https://doi.org/10.1093/nar/22.22.4673

  • Wang, Z., & Zhao, J. (2019). Pathogenesis of hypervirulent fowl adenovirus serotype 4: The contributions of viral and host factors. Viruses, 11(8), 741. https://doi.org/10.3390/v11080741

  • Wei, Z., Liu, H., Diao, Y., Li, X., Zhang, S., Gao, B., Tang, Y., Hu, J., & Diao, Y. (2019). Pathogenicity of fowl adenovirus (FAdV) serotype 4 strain SDJN in Taizhou geese. Avian Pathology, 48(5), 477–485. https://doi.org/10.1080/03079457.2019.1625305

  • Yin, D., He, L., Zhu, E., Fang, T., Yue, J., Wen, M., Wang, K., & Cheng, Z. (2021). A fowl adenovirus serotype 4 (FAdV-4) Fiber2 subunit vaccine candidate provides complete protection against challenge with virulent FAdV-4 strain in chickens. Veterinary Microbiology, 263, 109250. https://doi.org/10.1016/j.vetmic.2021.109250

  • Zhang, Y., Liu, R., Tian, K., Wang, Z., Yang, X., Gao, D., Zhang, Y., Fu, J., Wang, H., & Zhao, J. (2018). Fiber2 and hexon genes are closely associated with the virulence of the emerging and highly pathogenic fowl adenovirus 4. Emerging Microbes & Infections, 7(1), 1–10. https://doi.org/10.1038/s41426-018-0203-1

  • Zhao, J., Zhong, Q., Zhao, Y., Hu, Y., & Zhang, G. (2015). Pathogenicity and complete genome characterization of fowl adenoviruses isolated from chickens associated with inclusion body hepatitis and hydropericardium syndrome in China. PLOS One, 10(7), e0133073. https://doi.org/10.1371/journal.pone.0133073