PERTANIKA JOURNAL OF SOCIAL SCIENCES AND HUMANITIES

 

e-ISSN 2231-8534
ISSN 0128-7702

Home / Regular Issue / JSSH Vol. 31 (5) Aug. 2023 / JST-3755-2022

 

Analysis of Environmental Stresses on the Mechanical Properties of Laminated Glass Composites: A Review of Experimental Results and Outlook

Ufuoma Joseph Udi, Mustafasanie M. Yussof, Felix Nkapheeyan Isa and Luqman Chuah Abdullah

Pertanika Journal of Social Science and Humanities, Volume 31, Issue 5, August 2023

DOI: https://doi.org/10.47836/pjst.31.5.15

Keywords: Ageing resistance, environmental stresses, interlayer, laminated glass composites, mechanical properties, polymeric materials

Published on: 31 July 2023

Laminated glass composites are composed of two or more layers of glass and a thermoplastic elastomeric interlayer securely glued together in an autoclave at high temperature and pressure. This composite material which significantly enhances the performance of glass before and after breakage, is desirable for various engineering applications. The main elastomeric interlayer comprises Polyvinyl butyral (PVB), SentryGlas (SG), Ethylene-vinyl acetate (EVA), and Thermoplastic Polyethylene (TPU). These interlayer materials have different unique features which offer a variety of performance benefits for engineering purposes. However, the structural response of laminated glass composites' elements and polymeric interlayers is typically prone to structural modifications relative to temperature applications and other environmental actions such as humidity and solar irradiation. This review compares the weathering resistance of the most common interlayers used in laminated glass composites based on available experimental literature findings. The main mechanical and accelerated ageing tests of laminates with different interlayer materials are summarised, giving evidence of the impact of these environmental actions on the viscoelastic and mechanical properties of laminated glass composites plates. This research provides valuable references for predicting the long-term behaviour and risk evaluation of laminated glass composites under diverse ageing conditions.

  • Alsaed, O., & Jalham, I. S. (2012). Polyvinyl butyral (PVB) and ethyl vinyl acetate (EVA) as a binding material for laminated glass. Jordan Journal of Mechanical and Industrial Engineering, 6(2), 127-133.

  • Andreozzi, L., Bati, S. B., Fagone, M., Ranocchiai, G., & Zulli, F. (2014). Dynamic torsion tests to characterize the thermo-viscoelastic properties of polymeric interlayers for laminated glass. Construction and Building Materials, 65, 1-13. https://doi.org/10.1016/j.conbuildmat.2014.04.003

  • Andreozzi, L., Bati, S. B., Fagone, M., Ranocchiai, G., & Zulli, F. (2015). Weathering action on thermo-viscoelastic properties of polymer interlayers for laminated glass. Construction and Building Materials, 98, 757-766. https://doi.org/10.1016/j.conbuildmat.2015.08.010

  • ASTM D638. (2014). Standard Test Method for Tensile Properties of Plastics. https://www.astm.org/d0638-14.html

  • Bati, S. B., Ranocchiai, G., Reale, C., & Rovero, L. (2010). Time-dependent behavior of laminated glass. Journal of Materials in Civil Engineering, 22(4), 389-396. https://doi.org/10.1061/(asce)mt.1943-5533.0000032

  • Bedon, C. (2017). Structural glass systems under fire: Overview of design issues, experimental research, and developments. Advances in Civil Engineering, 2017, Article 2120570. https://doi.org/10.1155/2017/2120570

  • Belis, J., Depauw, J., Callewaert, D., Delincé, D., & Van Impe, R. (2009). Failure mechanisms and residual capacity of annealed glass/SGP laminated beams at room temperature. Engineering Failure Analysis, 16(6), 1866-1875. https://doi.org/10.1016/j.engfailanal.2008.09.023

  • Biolzi, L., Cattaneo, S., Orlando, M., Piscitelli, L. R., & Spinelli, P. (2020). Constitutive relationships of different interlayer materials for laminated glass. Composite Structures, 244, Article 112221. https://doi.org/10.1016/j.compstruct.2020.112221

  • Castori, G., & Speranzini, E. (2017). Structural analysis of failure behavior of laminated glass. Composites Part B: Engineering, 125, 89-99. https://doi.org/10.1016/j.compositesb.2017.05.062

  • Centelles, X., Castro, J. R., & Cabeza, L. F. (2020). Double-lap shear test on laminated glass specimens under diverse ageing conditions. Construction and Building Materials, 249, Article 118784. https://doi.org/10.1016/j.conbuildmat.2020.118784

  • Centelles, X., Martín, M., Solé, A., Castro, J. R., & Cabeza, L. F. (2020). Tensile test on interlayer materials for laminated glass under diverse ageing conditions and strain rates. Construction and Building Materials, 243, Article 118230. https://doi.org/10.1016/j.conbuildmat.2020.118230

  • Centelles, X., Pelayo, F., Lamela-Rey, M. J., Fernández, A. I., Salgado-Pizarro, R., Castro, J. R., & Cabeza, L. F. (2021). Viscoelastic characterization of seven laminated glass interlayer materials from static tests. Construction and Building Materials, 279, Article 122503. https://doi.org/10.1016/j.conbuildmat.2021.122503

  • Chen, S., Chen, X., & Wu, X. (2018). The mechanical behaviour of polyvinyl butyral at intermediate strain rates and different temperatures. Construction and Building Materials, 182, 66-79. https://doi.org/10.1016/j.conbuildmat.2018.06.080

  • Chen, S., Chen, Z., Chen, X., & Schneider, J. (2022). Evaluation of the delamination performance of polyvinyl-butyral laminated glass by through-cracked tensile tests. Construction and Building Materials, 341, Article 127914. https://doi.org/10.1016/J.CONBUILDMAT.2022.127914

  • CPNI EBP 04/13 (2013). Influence of delamination of laminated glass on its blast performance. National Protective Security Authority. https://www.npsa.gov.uk/system/files/documents/4d/8f/Delamination-of-laminated-glass.pdf

  • Datsiou, K. C., & Overend, M. (2017). Artificial ageing of glass with sand abrasion. Construction and Building Materials, 142, 536-551. https://doi.org/10.1016/j.conbuildmat.2017.03.094

  • Datsiou, K. C., & Overend, M. (2016). Evaluation of artificial ageing methods for glass. In J. Belis, F. Bos & C. Louter (Eds.), Challenging Glass Conference Proceedings - Challenging Glass 5: Conference on Architectural and Structural Applications of Glass, CGC 2016 (pp 581-592). CGC, Ghent University. https://doi.org/10.7480/cgc.5.2431

  • Delincé, D., Belis, J., Zarmati, G., & Parmentier, B. (2007). Structural behaviour of laminated glass elements-a step towards standardization. In Glass Peformance Days proceedings (pp. 658-663). Tamglass Ltd. Oy. http://dx.doi.org/10.13140/2.1.3592.6084

  • Desloir, M., Benoit, C., Bendaoud, A., Alcouffe, P., & Carrot, C. (2019). Plasticization of poly(vinyl butyral) by water: Glass transition temperature and mechanical properties. Journal of Applied Polymer Science, 136(12), Article 47230. https://doi.org/10.1002/app.47230

  • Draft prEN 16613:2013. (2013). Glass in building - Laminated glass and laminated safety glass - Determination of Interlayer Mechanical Properties. https://standards.iteh.ai/catalog/standards/sist/9a700c79-a2cc-4ce8-b931-6a274861c16a/osist-pren-16613-2013

  • Ensslen, F. (2007). Influences of laboratory and natural weathering on the durability of laminated safety glass. Glass Performance Days, 2, 584-590.

  • Giovanna, R., Zulli, F., Andreozzi, L., & Fagone, M. (2017). Test methods for the determination of interlayer properties in laminated glass. Journal of Materials in Civil Engineering, 29(4), Article 04016268. https://doi.org/10.1061/(asce)mt.1943-5533.0001802

  • Hála, P., Zemanová, A., Plachý, T., Konrád, P., & Sovják, R. (2022). Experimental modal analysis of glass and laminated glass large panels with EVA or PVB interlayer at room temperature. Materials Today: Proceedings, 62, 2421-2428. https://doi.org/10.1016/j.matpr.2022.02.578

  • Hána, T., Eliášová, M., & Sokol, Z. (2018). Structural performance of double laminated glass panels with EVA and PVB interlayer in four-point bending tests. International Journal of Structural Glass and Advanced Materials Research, 2(1), 164-177. https://doi.org/10.3844/sgamrsp.2018.164.177

  • Hána, T., Eliášová, M., Vokáč, M., & Machalická, K. V. (2020). Viscoelastic properties of EVA interlayer used in laminated glass structures. In IOP Conference Series: Materials Science and Engineering (Vol. 800, p. 012021). IOP Publishing. https://doi.org/10.1088/1757-899X/800/1/012021

  • Hána, T., Janda, T., Schmidt, J., Zemanová, A., Šejnoha, M., Eliášová, M., & Vokáč, M. (2019). Experimental and numerical study of viscoelastic properties of polymeric interlayers used for laminated glass: Determination of material parameters. Materials, 12(14), Article 2241. https://doi.org/10.3390/ma12142241

  • Hartwell, R., & Overend, M. (2020). Effects of humidity and the presence of moisture at the bond-line on the interfacial separation of laminated glass for flat glass re-use. In J. Belis, F. Bos & C. Louter (Eds.), Challenging Glass Conference Proceedings (Vol. 7, pp. 1-15). CGC, Tu Delft Open. https://doi.org/10.7480/CGC.7.4727

  • Hidallana-Gamage, H. D., Thambiratnam, D. P., & Perera, N. J. (2015). Influence of interlayer properties on the blast performance of laminated glass panels. Construction and Building Materials, 98, 502-518. https://doi.org/10.1016/j.conbuildmat.2015.08.129

  • Hooper, P. A., Blackman, B. R. K., & Dear, J. P. (2012). The mechanical behaviour of poly(vinyl butyral) at different strain magnitudes and strain rates. Journal of Materials Science, 47, 3564-3576. https://doi.org/10.1007/s10853-011-6202-4

  • ISO-6721-1. (2019). Plastics - Determination of dynamic mechanical properties - Part 1: General principles. https://www.iso.org/standard/73142.html

  • ISO-62. (2008). Plastics - Determination of water absorption. https://www.iso.org/standard/41672.html

  • ISO-12543-4. (2021). Glass in building - Laminated glass and laminated safety glass - Part 4: Test methods for durability. https://www.iso.org/standard/75499.html

  • ISO-175. (2010). Plastics - Methods of test for the determination of the effects of immersion in liquid chemicals. https://www.iso.org/standard/55483.html

  • ISO-527-1. (2019). Plastics - Determination of tensile properties - Part 1: General principles. https://www.iso.org/standard/75824.html

  • Joseph Udi, U., Yussof, M. M., Musa Ayagi, K., Bedon, C., & Khairul Kamarudin, M. (2023). Environmental degradation of structural glass systems: A review of experimental research and main influencing parameters. Ain Shams Engineering Journal, 14(5), 101970. https://doi.org/10.1016/j.asej.2022.101970

  • Kamarudin, M. K., Yusoff, M. M., Disney, P., & Parke, G. A. R. (2018). Experimental and numerical investigation of the buckling performance of tubular glass columns under compression. Structures, 15, 355-369. https://doi.org/10.1016/j.istruc.2018.08.002

  • Kothe, M., & Weller, B. (2014). Influence of environmental stresses to the ageing behaviour of interlayer. In C. Louter, F. Bos, J. Belis & J. P. Lebet (Eds.), Challenging Glass 4 and COST Action TU0905 Final Conference - Proceedings of the Challenging Glass 4 and Cost Action TU0905 Final Conference (pp. 439-446). CRC Press.

  • Kozlowski, M., Bedon, C., & Honfi, D. (2018). Numerical analysis and 1D/2D sensitivity study for monolithic and laminated structural glass elements under thermal exposure. Materials, 11(8), Article 1447. https://doi.org/10.3390/ma11081447

  • Liu, B., Sun, Y., Li, Y., Wang, Y., Ge, D., & Xu, J. (2012). Systematic experimental study on mechanical behavior of PVB (polyvinyl butyral) material under various loading conditions. Polymer Engineering and Science, 52(5), 1137-1147. https://doi.org/10.1002/pen.22175

  • Liu, B., Xu, J., & Li, Y. (2014). Constitutive investigation on viscoelasticity of PolyVinyl Butyral: Experiments based on dynamic mechanical analysis method. Advances in Materials Science and Engineering, 2014, Article 794568. https://doi.org/10.1155/2014/794568

  • Lombardo, T., Chabas, A., Lefèvre, R. A., Verità, M., & Geotti-Bianchini, F. (2005). Weathering of float glass exposed outdoors in an urban area. Glass Technology, 46(3), 271-276.

  • Louter, C., Belis, J., Veer, F., & Lebet, J. P. (2012). Durability of SG-laminated reinforced glass beams: Effects of temperature, thermal cycling, humidity and load-duration. Construction and Building Materials, 27(1), 280-292. https://doi.org/10.1016/j.conbuildmat.2011.07.046

  • Lu, Y., Chen, S., & Shao, X. (2021). Shear modulus of ionomer interlayer: Effects of time, temperature and strain rate. Construction and Building Materials, 302, Article 124224. https://doi.org/10.1016/j.conbuildmat.2021.124224

  • Martín, M., Centelles, X., Solé, A., Barreneche, C., Fernández, A. I., & Cabeza, L. F. (2020). Polymeric interlayer materials for laminated glass: A review. Construction and Building Materials, 230, Article 116897. https://doi.org/10.1016/j.conbuildmat.2019.116897

  • Mohagheghian, I., Charalambides, M. N., Wang, Y., Jiang, L., Zhang, X., Yan, Y., Kinloch, A. J., & Dear, J. P. (2018). Effect of the polymer interlayer on the high-velocity soft impact response of laminated glass plates. International Journal of Impact Engineering, 120, 150-170. https://doi.org/10.1016/j.ijimpeng.2018.06.002

  • Pankhardt, K., & Balázs, G. L. (2010). Temperature dependent load bearing capacity of laminated glass panes. Periodica Polytechnica Civil Engineering, 54(1), 11-22. https://doi.org/10.3311/pp.ci.2010-1.02

  • Pelayo, F., Lamela-Rey, M. J., Muniz-Calvente, M., López-Aenlle, M., Álvarez-Vázquez, A., & Fernández-Canteli, A. (2017). Study of the time-temperature-dependent behaviour of PVB: Application to laminated glass elements. Thin-Walled Structures, 119, 324-331. https://doi.org/10.1016/j.tws.2017.06.030

  • Ranocchiai, G., Andreozzi, L., Zulli, F., & Fagone, M. (2016). Effects of interlayer weathering on the structural behaviour of laminated glass structures. In J. Belis, F. Bos & C. Louter (Eds.), Challenging Glass Conference Proceedings - Challenging Glass 5: Conference on Architectural and Structural Applications of Glass, CGC 2016 (pp. 385-390). CGC, Ghent University. https://doi.org/10.7480/CGC.5.2264

  • Ranocchiai, G., Sciurpi, F., & Fagone, M. (2018). Laminated glass beams subjected to artificial solar radiation. In C. Louter, F. Bos & J. Belis (Eds.),Challenging Glass 6: Conference on Architectural and Structural Applications of Glass, CGC 2018 - Proceedings (pp. 447-452). CGC, TU Delft Open. https://doi.org/10.7480/cgc.6.2167

  • Reiß, S., Krischok, S., & Rädlein, E. (2019). Comparative study of weather induced corrosion mechanisms of toughened and normal float glasses. Glass Technology: European Journal of Glass Science and Technology Part A, 60(2), 33-44. https://doi.org/10.13036/17533546.60.2.020

  • Bennison, S. J., Qin, M. H. X., & Davis, P. (2008, May). High-performance laminated glass for structurally efficient glazing. [Paper Presented]. Proceedings of Innovative Light-Weight Structures and Sustainable Facades Conference, Hong Kong.

  • Sable, L., Kinsella, D., & Kozłowski, M. (2019). Influence of EVA, PVB and Ionoplast interlayers on the structural behaviour and fracture pattern of laminated glass. International Journal of Structural Glass and Advanced Materials Research, 3(1), 62-78. https://doi.org/10.3844/sgamrsp.2019.62.78

  • Sable, L., Skukis, E., Japins, G., & Kalnins, K. (2017). Correlation between Numerical and experimental tests of laminated glass panels with visco-elastic interlayer. Procedia Engineering, 172, 945-952. https://doi.org/10.1016/j.proeng.2017.02.107

  • Serafinavicius, T., Kvedaras, A. K., & Sauciuvenas, G. (2013). Bending behavior of structural glass laminated with different interlayers. Mechanics of Composite Materials, 49(4), 437-446. https://doi.org/10.1007/s11029-013-9360-4

  • Serafinavicius, T., Lebet, J. P., Louter, C., Kuranovas, A., & Lenkimas, T. (2014, January). The effects of environmental impacts on durability of laminated glass plates with interlayers (SG, EVA, PVB). In Challenging Glass 4 & COST Action TU0905 Final Conference (pp. 455-462). CRC Press.

  • Serafinavičius, T., Lebet, J. P., Louter, C., Lenkimas, T., & Kuranovas, A. (2013). Long-term laminated glass four point bending test with PVB, EVA and SG interlayers at different temperatures. Procedia Engineering, 57, 996-1004. https://doi.org/10.1016/j.proeng.2013.04.126

  • Subagio, R. (2020). Developing value innovation strategy in the “Blue Ocean Shift” framework at the flat glass industry in Indonesia. IKAT: The Indonesian Journal of Southeast Asian Studies, 4(1), 47-62. https://doi.org/10.22146/ikat.v4i1.54657

  • Vedrtnam, A., & Pawar, S. J. (2018). Experimental and simulation studies on fatigue behavior of laminated glass having polyvinyl butyral and ethyl vinyl acetate interlayers. Fatigue and Fracture of Engineering Materials and Structures, 41(6), 1437-1446. https://doi.org/10.1111/ffe.12788

  • Wang, Y. (2020). The breakage behavior of different types of glazing in a fire. In The Proceedings of 11th Asia-Oceania Symposium on Fire Science and Technology (pp. 549-560). Springer. https://doi.org/10.1007/978-981-32-9139-3_40

  • Yang, J., Wang, Y., Wang, X. E., Hou, X., Zhao, C., & Ye, J. (2022). Local bridging effect of fractured laminated glass with EVA based hybrid interlayers under weathering actions. Construction and Building Materials, 314, Article 125595. https://doi.org/10.1016/j.conbuildmat.2021.125595

  • Yussof, M. M., Lim, S. H., & Kamarudin, M. K. (2020). The effect of short-term exposure to natural outdoor environment on the strength of tempered glass panel. In Proceedings of AICCE'19: Transforming the Nation for a Sustainable Tomorrow 4 (pp. 997-1005). Springer International Publishing. https://doi.org/10.1007/978-3-030-32816-0_74

  • Zemanová, A., Hála, P., Konrád, P., Janda, T., & Hlůžek, R. (2022). The influence of interlayer properties on the response of laminated glass to low-velocity hard-object impact. International Journal of Impact Engineering, 159, Article 104036. https://doi.org/10.1016/j.ijimpeng.2021.104036

  • Zhang, X., Liu, H., Maharaj, C., Zheng, M., Mohagheghian, I., Zhang, G., Yan, Y., & Dear, J. P. (2020). Impact response of laminated glass with varying interlayer materials. International Journal of Impact Engineering, 139, Article 103505. https://doi.org/10.1016/j.ijimpeng.2020.103505

  • Zhang, X., Mohammed, I. K., Zheng, M., Wu, N., Mohagheghian, I., Zhang, G., Yan, Y., & Dear, J. P. (2019). Temperature effects on the low velocity impact response of laminated glass with different types of interlayer materials. International Journal of Impact Engineering, 124, 9-22. https://doi.org/10.1016/j.ijimpeng.2018.09.004

  • Zhang, X., Shi, Y., Hao, H., & Cui, J. (2015). The mechanical properties of ionoplast interlayer material at high strain rates. Materials and Design, 83, 387-399. https://doi.org/10.1016/j.matdes.2015.06.076

  • Zhao, C., Yang, J., Wang, X.-E., Ren, M., & Azim, I. (2021). Investigatio n into short term behaviors of embedded laminated glass connections with various configurations. Construction and Building Materials, 297, Article 123687. https://doi.org/10.1016/j.conbuildmat.2021.123687