e-ISSN 2231-8542
ISSN 1511-3701
Joana Noor Rashidah Rosli, Sharifah Aminah Syed Mohamad, Anis Low Muhammad Low and Suhaidi Ariffin
Pertanika Journal of Tropical Agricultural Science, Volume 32, Issue 2, March 2024
DOI: https://doi.org/10.47836/pjst.32.2.02
Keywords: Bacterial, epigenetic modifiers, gene clusters, secondary metabolites
Published on: 26 March 2024
Bacteria have produced many important secondary metabolites, especially in the pharmaceutical industry. However, the increase in the rediscovery rate of the known compound has been inconvenient to researchers and the pharmaceutical industry. Nevertheless, genome mining in bacteria has uncovered several cryptic metabolic pathways that may be key to discovering new secondary metabolites. The conventional laboratory environment, however, limits the metabolic pathways of microorganisms, making it impossible for secondary metabolites to be produced. As a result, researchers began using epigenetics to change the expression of the genes that code for secondary metabolites in microorganisms. Using epigenetics modifiers, secondary metabolite gene clusters are activated without altering the bacterial DNA sequence. This review article focuses on the different epigenetic changes and how they affect gene expression to activate the synthesis of secondary metabolites in bacteria.
Akone, S. H., Pham, C.-D., Chen, H., Ola, A. R., Ntie-Kang, F., & Proksch, P. (2018). Epigenetic modification, co-culture and genomic methods for natural product discovery. Physical Sciences Reviews, 4(4), Article 20180118. https://doi.org/10.1515/psr-2018-0118
Baral, B., Akhgari, A., & Metsä-Ketelä, M. (2018). Activation of microbial secondary metabolic pathways: Avenues and challenges. Synthetic and Systems Biotechnology, 3(3), 163-178. https://doi.org/10.1016/j.synbio.2018.09.001
Belknap, K., Park, C., Barth, B., & Andam, C. (2020). Genome mining of biosynthetic and chemotherapeutic gene clusters in streptomyces bacteria. Scientific Reports, 10, Article 2003. https://doi.org/10.1038/s41598-020-58904-9
Bind, S., Bind, S., Sharma, A. K., & Chaturvedi, P. (2022). Epigenetic modification: A key tool for secondary metabolite production in microorganisms. Frontiers in Microbiology, 13, Article 784109. https://doi.org/10.3389/fmicb.2022.784109
Chakraborty, P. (2022). Gene cluster from plant to microbes: Their role in genome architecture, organism's development, specialised metabolism and drug discovery. Biochimie, 193, 1-15. https://doi.org/10.1016/j.biochi.2021.12.001
Fernandez, M., Soliveri, J., Novella, I., Yebra, M., Barbés, C., & Sánchez, J. (1995). Effect of 5-azacytidine and sinefungin on streptomyces development. Gene, 157(1-2), 221-223. https://doi.org/10.1016/0378-1119(94)00672-F
Fischer, N., Sechet, E., Friedman, R., Amiot, A., Sobhani, I., Nigro, G., Sansonetti, P. J., & Sperandio, B. (2016). Histone deacetylase inhibition enhances antimicrobial peptide but not inflammatory cytokine expression upon bacterial challenge. Proceedings of the National Academy of Sciences of the United States of America, 113(21), E2993-E3001. https://doi.org/10.1073/pnas.1605997113
Gross, H., & Loper, J. E. (2009). Genomics of secondary metabolite production by pseudomonas spp. Natural Product Reports, 26(11), 1408. https://doi.org/10.1039/b817075b
Jackson, S., Crossman, L., Almeida, E., Margassery, L., Kennedy, J., & Dobson, A. (2018). Diverse and abundant secondary metabolism biosynthetic gene clusters in the genomes of marine sponge derived streptomyces spp. isolates. Marine Drugs, 16(2), Article 67. https://doi.org/10.3390/md16020067
Kim, H. J., & Bae, S. C. (2011). Histone deacetylase inhibitors: Molecular mechanisms of action and clinical trials as anticancer drugs. American Journal of Translational Research, 3(2), 166-179.
Klaus, J., Coulon, P., Koirala, P., Seyedsayamdost, M., Déziel, E., & Chandler, J. (2020). Secondary metabolites from the Burkholderia pseudomallei complex: Structure, ecology, and evolution. Journal of Industrial Microbiology and Biotechnology, 47(9-10), 877-887. https://doi.org/10.1007/s10295-020-02317-0
Kumar, J., Sharma, V. K., Singh, D. K., Mishra, A., Gond, S. K., Verma, S. K., Kumar, A., & Kharwar, R. N. (2016). Epigenetic activation of antibacterial property of an endophytic Streptomyces coelicolor strain AZRA 37 and identification of the induced protein using MALDI TOF MS/MS. PloS One, 11(2), Article e0147876. https://doi.org/10.1371/journal.pone.0147876
Lauffer, B. E. L., Mintzer, R., Fong, R., Mukund, S., Tam, C., Zilberleyb, I., Flicke, B., Ritscher, A., Fedorowicz, G., Vallero, R., Ortwine, D. F., Gunzner, J., Modrusan, Z., Neumann, L., Koth, C. M., Lupardus, P. J., Kaminker, J. S., Heise, C. E., & Steiner, P. (2013). Histone deacetylase (HDAC) inhibitor kinetic rate constants correlate with cellular histone acetylation but not transcription and cell viability. Journal of Biological Chemistry, 288(37), 26926-26943. https://doi.org/10.1074/jbc.M113.490706
Le Govic, Y., Papon, N., Le Gal, S., Bouchara, J., & Vandeputte, P. (2019). Non-ribosomal peptide synthetase gene clusters in the human pathogenic fungus Scedosporium apiospermum. Frontiers in Microbiology, 10, Article 2062. https://doi.org/10.3389/fmicb.2019.02062
Lebedeva, J., Jukneviciute, G., Čepaitė, R., Vickackaite, V., Pranckutė, R., & Kuisiene, N. (2021). Genome mining and characterisation of biosynthetic gene clusters in two cave strains of Paenibacillus sp. Frontiers in Microbiology, 11, Article 612483. https://doi.org/10.3389/fmicb.2020.612483
Lee, N., Hwang, S., Kim, J., Cho, S., Palsson, B., & Cho, B. K. (2020). Mini review: Genome mining approaches for the identification of secondary metabolite biosynthetic gene clusters in Streptomyces. Computational and Structural Biotechnology Journal, 18, 1548-1556. https://doi.org/10.1016/j.csbj.2020.06.024
Li, G., Tian, Y., & Zhu, W. (2020). The roles of histone deacetylases and their inhibitors in cancer therapy. Frontiers in Cell and Developmental Biology, 8, Article 576946. https://doi.org/10.3389/fcell.2020.576946
Li, J. W., & Vederas, J. C. (2009). Drug discovery and natural products: End of an era or an endless frontier? Science, 325(5937), 161-165. https://doi.org/10.1126/science.1168243
Little, R. F., Samborskyy, M., & Leadlay, P. F. (2020). The biosynthetic pathway to tetromadurin (SF2487/A80577), a polyether tetronate antibiotic. PloS One, 15(9), Article e0239054. https://doi.org/10.1371/journal.pone.0239054
Liu, Z., Zhao, Y., Huang, C., & Luo, Y. (2021). Recent advances in silent gene cluster activation in streptomyces, Frontiers in Bioengineering and Biotechnology, 9, Article 632230. https://doi.org/10.3389/fbioe.2021.632230
Medema, M. H., Kottmann, R., Yilmaz, P., Cummings, M., Biggins, J. B., Blin, K., de Bruijn, I., Chooi, Y. H., Claesen, J., Coates, R. C., Cruz-Morales, P., Duddela, S., Düsterhus, S., Edwards, D. J., Fewer, D. P., Garg, N., Geiger, C., Gomez-Escribano, J. P., Greule, A., … & Glöckner, F. O. (2015). Minimum information about a biosynthetic gene cluster. Nature Chemical Biology, 11(9), 625-631. https://doi.org/10.1038/nchembio.1890
Militello, K. T., Simon, R. D., Mandarano, A. H., DiNatale, A., Hennick, S. M., Lazatin, J. C., & Cantatore, S. (2016). 5-azacytidine induces transcriptome changes in Escherichia coli via DNA methylation-dependent and DNA methylation-independent mechanisms. BMC Microbiology, 16, Article 130. https://doi.org/10.1186/s12866-016-0741-4
Moore, J. M., Bradshaw, E., Seipke, R. F., Hutchings, M. I., & McArthur, M. (2012). Use and discovery of chemical elicitors that stimulate biosynthetic gene clusters in Streptomyces bacteria. Methods in Enzymology, 517, 367-385. https://doi.org/10.1016/B978-0-12-404634-4.00018-8
Murray, C., Ikuta, K., Sharara, F., Swetschinski, L., Robles Aguilar, G., & Gray, A., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G. Hamadani, B. H. K., Kumaran, E. A. P., McManigal, B., ... & Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. The Lancet, 399(10325), 629-655. https://doi.org/10.1016/S0140-6736(21)02724-0
Okada, B. K., & Seyedsayamdost, M. R. (2017). Antibiotic dialogues: Induction of silent biosynthetic gene clusters by exogenous small molecules. FEMS Microbiology Reviews, 41(1), 19-33. https://doi.org/10.1093/femsre/fuw035
Ou, Y., Zhang, Q., Tang, Y., Lu, Z., Lu, X., Zhou, X., & Liu, C. (2018). DNA methylation enzyme inhibitor RG108 suppresses the radioresistance of esophageal cancer. Oncology Reports, 39(3), 993-1002. https://doi.org/10.3892/or.2018.6210
Pahalagedara, A. S. N. W., Flint, S., Palmer, J., Brightwell, G., & Gupta, T. B. (2020). Antimicrobial production by strictly anaerobic clostridium spp. International Journal of Antimicrobial Agents, 55(5), Article 105910. https://doi.org/10.1016/j.ijantimicag.2020.105910
Pettit, R. (2011). Small-molecule elicitation of microbial secondary metabolites. Microbial Biotechnology, 4(4), 471-478. https://doi.org/10.1111/j.1751-7915.2010.00196.x
Pfannenstiel, B. T., & Keller, N. P. (2019). On top of biosynthetic gene clusters: How epigenetic machinery influences secondary metabolism in fungi. Biotechnology Advances, 37(6), Article 107345. https://doi.org/10.1016/j.biotechadv.2019.02.001
Pillay, L. C., Nekati, L., Makhwitine, P. J., & Ndlovu, S. I. (2022). Epigenetic activation of silent biosynthetic gene clusters in endophytic fungi using small molecular modifiers. Frontiers in Microbiology, 13, Article 815008. https://doi.org/10.3389/fmicb.2022.815008
Poças-Fonseca, M. J., Cabral, C. G., & Manfrão-Netto J. H. C. (2020). Epigenetic manipulation of filamentous fungi for biotechnological applications: A systematic review. Biotechnology Letters, 42, 885-904. https://doi.org/10.1007/s10529-020-02871-8
Ramesha, K., Mohana, N., Nuthan, B., Rakshith, D., & Satish, S. (2018). Epigenetic modulations of mycoendophytes for novel bioactive molecules. Biocatalysis and Agricultural Biotechnology, 16, 663-668. https://doi.org/10.1016/j.bcab.2018.09.025
Rutledge, P. J., & Challis, G. L. (2015). Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nature Reviews Microbiology, 13, 509-523. https://doi.org/10.1038/nrmicro3496
Scherlach, K., & Hertweck, C. (2021). Mining and unearthing hidden biosynthetic potential. Nature Communication, 12, Article 3864. https://doi.org/10.1038/s41467-021-24133-5
Schumacher, J. D. (2014). Epigenetic modification and analysis of natural product gene clusters to enhance drug discovery from bacteria (Publication no. 309). [Master’s thesis]. University of Rhode Island, USA. https://doi.org/10.23860/thesis-schumacher-justin-2014
Shah, A. M., Shakeel-U-Rehman, Hussain, A., Mushtaq, S., Rather, M. A., Shah, A., Ahmad, Z., Khan, I. A., Bhat, K. A., & Hassan, Q. P. (2017). Antimicrobial investigation of selected soil actinomycetes isolated from unexplored regions of Kashmir Himalayas, India. Microbial Pathogenesis, 110, 93-99. https://doi.org/10.1016/j.micpath.2017.06.017
Smanski, M., Zhou, H., Claesen, J., Shen, B., Fischbach, M., & Voigt, C. (2016). Synthetic biology to access and expand nature's chemical diversity. Nature Reviews Microbiology, 14, 135-149. https://doi.org/10.1038/nrmicro.2015.24
Strauss, J., & Reyes-Dominguez, Y. (2011). Regulation of secondary metabolism by chromatin structure and epigenetic codes. Fungal Genetics and Biology, 48(1), 62-69. https://doi.org/10.1016/j.fgb.2010.07.009
Tanaka, Y., Kasahara, K., Hirose, Y., Murakami, K., Kugimiya, R., & Ochi, K. (2013). Activation and products of the cryptic secondary metabolite biosynthetic gene clusters by rifampin resistance (rpoB) mutations in actinomycetes. Journal of Bacteriology, 195(13), 2959-2970. https://doi.org/10.1128/JB.00147-13
Trautman, E. P., & Crawford, J. M. (2016). Linking biosynthetic gene clusters to their metabolites via pathway-targeted molecular networking. Current Topics in Medicinal Chemistry, 16(15), 1705-1716. https://doi.org/10.2174/1568026616666151012111046
Vandenbussche, I., Sass, A., Pinto-Carbó, M., Mannweiler, O., Eberl, L., & Coenye, T. (2020). DNA methylation epigenetically regulates gene expression in Burkholderia cenocepacia and controls biofilm formation, cell aggregation, and motility. Molecular Biolody and Physiology, 5(4), Article e00455-20. https://doi.org/10.1128/mSphere.00455-20
Wang, B., Waters, A. L., Sims, J. W., Fullmer, A., Ellison, S., & Hamann, M. T. (2013). Complex marine natural products as potential epigenetic and production regulators of antibiotics from a marine Pseudomonas aeruginosa. Microbial Ecology, 65, 1068-1075. https://doi.org/10.1007/s00248-013-0213-4
Weinhold B. (2006). Epigenetics: The science of change. Environmental Health Perspectives, 114(3), A160-A167. https://doi.org/10.1289/ehp.114-a160
Xue, Y., & Acar, M. (2018). Mechanisms for the epigenetic inheritance of stress response in single cells. Current Genetics, 64, 1221-1228. https://doi.org/10.1007/s00294-018-0849-1
Yang, K., Tian, J., & Keller, N. P. (2022). Post-translational modifications drive secondary metabolite biosynthesis in aspergillus: A review. Environmental Microbiology, 24(7), 2857-2881. https://doi.org/10.1111/1462-2920.16034
Zhang, Y., Chen, M., Bruner, S., & Ding, Y. (2018). Heterologous production of microbial ribosomally synthesised and post-translationally modified peptides. Frontiers in Microbiology, 9, Article 1801. https://doi.org/10.3389/fmicb.2018.01801
ISSN 1511-3701
e-ISSN 2231-8542